scholarly journals Altered costimulatory signals and hypoxia support chromatin landscapes limiting the functional potential of exhausted T cells in cancer

2021 ◽  
Author(s):  
B. Rhodes Ford ◽  
Natalie L. Rittenhouse ◽  
Nicole E. Scharping ◽  
Paolo D.A. Vignali ◽  
Andrew T. Frisch ◽  
...  

Immunotherapy has changed cancer treatment with major clinical successes, but response rates remain low due in part to elevated prevalence of dysfunctional, terminally exhausted T cells. However, the mechanisms promoting progression to terminal exhaustion remain undefined. We profiled the histone modification landscape of tumor-infiltrating CD8 T cells throughout differentiation, finding terminally exhausted T cells possessed chromatin features limiting their transcriptional potential. Active enhancers enriched for bZIP/AP-1 transcription factor motifs lacked correlated gene expression, which were restored by immunotherapeutic costimulatory signaling. Epigenetic repression was also driven by an increase in histone bivalency, which we linked directly to hypoxia exposure. Our study is the first to profile the precise epigenetic changes during intratumoral differentiation to exhaustion, highlighting their altered function is driven by both improper costimulatory signals and environmental factors. These data suggest even terminally exhausted T cells remain poised for transcription in settings of increased costimulatory signaling and reduced hypoxia.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2210-2210
Author(s):  
H. Jiang ◽  
C. Wade-Harris ◽  
L. Baxi ◽  
M. S. Cairo

Abstract It has been recognized that dysfunction of CB immunity is in part due to the immaturity of the neonatal immune system (Cairo, Blood, 1997). However, biological pathways and molecular mechanisms associated with the immaturity of CB immunity are still poorly understood. Recently we have utilized oligonucleotide microarray to examine gene expression profiling of CB versus APB Mo and have demonstrated significant differential gene expression patterns, including surface molecules, cytokines, signaling molecules, transcription factors and apoptotic genes (Jiang/Cairo, et al, J. of Immunol., 2004). We sought to examine whether there are differential expressed genes occurred in Mo-derived CB versus APB DC and their impact on DC mediated T cell activity. Briefly, Mo were purified from fresh CB or APB and cultured for 8 days with GM-CSF and IL-4 (immature DC (iDC)) and LPS for mature DC (mDC). mRNA was isolated and oligonucleotide microarray was carried out (Affymetrix, U133A). Data was analyzed by Microarray Suite Version 5.0 (Affymetrix) and GeneSpring 5.0 software (Silicon Genetics). Selected genes were analyzed by RT-PCR (SuperScript, Invetrogen). We identified gene expression patterns that were significantly lower in CB versus APB DC including surface molecules HLA-DQA1 (4F), HLA-DRB3 (5F), HLA-DRB4 (5.5F), CD80 (3F), CD38 (3.8F); cytokine/chemokine genes IL-1b (2.5F), IL6 (2.9F), IL12B (3.5F), CXCL10 (6.6F); immunoregulatory genes ISG20 (11F), IFI27 (7.6F), TNFSF10 (4.5F), SOCS3 (2.5F). Moreover, several transcription factor genes whose proteins may involve in the activation of expression of these immune regulator genes were also differentially expressed (IRF-5 (3F), IRF7 (3F), MAD (6.3F)). We therefore compared CB versus APB DC antigen presentation activity to APB CD8 T cells by ELISPOT assay for interferon-r (IFNr) production (BD Pharmagen). Briefly, the purified CD8 T cells (MHC HLA A2) were incubated with CB or APB DC that were loaded without or with influenza peptide onto ELISPOT plate (Larsson, et al, J. of Immunol., 2000). The ELISPOT plates were developed, scanned and quantitated by an ELISPOT reader (C.T.L. Technology). Our results demonstrated that, although CB or APB mDC had allogeneic effects, influenza peptide loaded CB mDC was not able to induce CD8 T cells to produce IFNr while APB mDC loaded with influenza peptide strongly induced CD8 T cells to produce IFNr. This stimulatory effect of APB mDC on CD8 T cells to produce IFNr was 3.5 fold greater than that of CB mDC. We further examined DC antigen presentation activity to CD4 T cells and observed that APB-DC had stronger effects on CD4 T cell proliferation (3 fold for mDC vs. iDC) compared with CB-DC (only 1.5 fold for mDC vs. iDC) by CFSE assay (Molecular Probe). We postulate that decreased expression of specific surface molecules and other genes resulting in lower surface protein expression in CB DC may in part be responsible for the lack of initiation of signaling events from cell surface to trigger CB-DC to stimulate activation of CD8 and CD4 T cells. The decreased expression of transcription factor genes may also in part be responsible for the lower expressed surface molecule genes. Furthermore, these decreased expressed genes in other molecular categories in LPS-CB vs. APB DC may also partially be responsible for differential innate and adaptive immune function and properties of CB vs. APB.


2020 ◽  
Vol 117 (48) ◽  
pp. 30639-30648
Author(s):  
Dan Hu ◽  
Emily C. Tjon ◽  
Karin M. Andersson ◽  
Gabriela M. Molica ◽  
Minh C. Pham ◽  
...  

IL-17–producing Th17 cells are implicated in the pathogenesis of rheumatoid arthritis (RA) and TNF-α, a proinflammatory cytokine in the rheumatoid joint, facilitates Th17 differentiation. Anti-TNF therapy ameliorates disease in many patients with rheumatoid arthritis (RA). However, a significant proportion of patients do not respond to this therapy. The impact of anti-TNF therapy on Th17 responses in RA is not well understood. We conducted high-throughput gene expression analysis of Th17-enriched CCR6+CXCR3−CD45RA−CD4+T (CCR6+T) cells isolated from anti-TNF–treated RA patients classified as responders or nonresponders to therapy. CCR6+T cells from responders and nonresponders had distinct gene expression profiles. Proinflammatory signaling was elevated in the CCR6+T cells of nonresponders, and pathogenic Th17 signature genes were up-regulated in these cells. Gene set enrichment analysis on these signature genes identified transcription factor USF2 as their upstream regulator, which was also increased in nonresponders. Importantly, short hairpin RNA targetingUSF2in pathogenic Th17 cells led to reduced expression of proinflammatory cytokines IL-17A, IFN-γ, IL-22, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as transcription factor T-bet. Together, our results revealed inadequate suppression of Th17 responses by anti-TNF in nonresponders, and direct targeting of the USF2-signaling pathway may be a potential therapeutic approach in the anti-TNF refractory RA.


Immunity ◽  
2009 ◽  
Vol 31 (2) ◽  
pp. 283-295 ◽  
Author(s):  
Axel Kallies ◽  
Annie Xin ◽  
Gabrielle T. Belz ◽  
Stephen L. Nutt

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A673-A673
Author(s):  
Rhodes Ford ◽  
Natalie Rittenhouse ◽  
Nicole Scharping ◽  
Paolo Vignali ◽  
Greg Delgoffe ◽  
...  

BackgroundCD8+ T cells are a fundamental component of the anti-tumor response; however, tumor-infiltrating CD8+ T cells (TIL) are rendered dysfunctional by the tumor microenvironment. CD8+ TIL display an exhausted phenotype with decreased cytokine expression and increased expression of co-inhibitory receptors (IRs), such as PD-1 and Tim-3. The acquisition of IRs mark the progression of dysfunctional TIL from progenitors (PD-1Low) to terminally exhausted (PD-1+Tim-3+). How the chromatin landscape changes during this progression has not been described.MethodsUsing a low-input ChIP-based assay called Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we have profiled the histone modifications at the chromatin of tumor-infiltrating CD8+ T cell subsets to better understand the relationship between the epigenome and the transcriptome as TIL progress towards terminal exhaustion.ResultsWe have identified two epigenetic characteristics unique to terminally exhausted cells. First, we have identified a unique set of genes, characterized by active histone modifications that do not have correlated gene expression. These regions are enriched for AP-1 transcription factor motifs, yet most AP-1 family factors are actively downregulated in terminally exhausted cells, suggesting signals that promote downregulation of AP-1 expression negatively impacts gene expression. We have shown that inducing expression of AP-1 factors with a 41BB agonist correlates with increased expression of these anticorrelated genes. We have also found a substantial increase in the number of genes that exhibit bivalent chromatin marks, defined by the presence of both active (H3K4me3) and repressive (H3K27me3) chromatin modifications that inhibit gene expression. These bivalent genes in terminally exhausted T cells are not associated with plasticity and represent aberrant hypermethylation in response to tumor hypoxia, which is necessary and sufficient to promote downregulation of bivalent genes.ConclusionsOur study defines for the first time the roles of costimulation and the tumor microenvironment in driving epigenetic features of terminally exhausted tumor-infiltrating T cells. These results suggest that terminally exhausted T cells have genes that are primed for expression, given the right signals and are the basis for future work that will elucidate that factors that drive progression towards terminal T cell exhaustion at the epigenetic level and identify novel therapeutic targets to restore effector function of tumor T cells and mediate tumor clearance.


2021 ◽  
Vol 11 (12) ◽  
pp. 1291
Author(s):  
Deni Ramljak ◽  
Martina Vukoja ◽  
Marina Curlin ◽  
Katarina Vukojevic ◽  
Maja Barbaric ◽  
...  

Healthy and controlled immune response in COVID-19 is crucial for mild forms of the disease. Although CD8+ T cells play important role in this response, there is still a lack of studies showing the gene expression profiles in those cells at the beginning of the disease as potential predictors of more severe forms after the first week. We investigated a proportion of different subpopulations of CD8+ T cells and their gene expression patterns for cytotoxic proteins (perforin-1 (PRF1), granulysin (GNLY), granzyme B (GZMB), granzyme A (GZMA), granzyme K (GZMK)), cytokine interferon-γ (IFN-γ), and apoptotic protein Fas ligand (FASL) in CD8+ T cells from peripheral blood in first weeks of SARS-CoV-2 infection. Sixteen COVID-19 patients and nine healthy controls were included. The absolute counts of total lymphocytes (p = 0.007), CD3+ (p = 0.05), and CD8+ T cells (p = 0.01) in COVID-19 patients were significantly decreased compared to healthy controls. In COVID-19 patients in CD8+ T cell compartment, we observed lower frequency effector memory 1 (EM1) (p = 0.06) and effector memory 4 (EM4) (p < 0.001) CD8+ T cells. Higher mRNA expression of PRF1 (p = 0.05) and lower mRNA expression of FASL (p = 0.05) at the fifth day of the disease were found in COVID-19 patients compared to healthy controls. mRNA expression of PRF1 (p < 0.001) and IFN-γ (p < 0.001) was significantly downregulated in the first week of disease in COVID-19 patients who progressed to moderate and severe forms after the first week, compared to patients with mild symptoms during the entire disease course. GZMK (p < 0.01) and FASL (p < 0.01) mRNA expression was downregulated in all COVID-19 patients compared to healthy controls. Our results can lead to a better understanding of the inappropriate immune response of CD8+ T cells in SARS-CoV2 with the faster progression of the disease.


2018 ◽  
Vol 215 (9) ◽  
pp. 2265-2278 ◽  
Author(s):  
Colleen M. Lau ◽  
Ioanna Tiniakou ◽  
Oriana A. Perez ◽  
Margaret E. Kirkling ◽  
George S. Yap ◽  
...  

An IRF8-dependent subset of conventional dendritic cells (cDCs), termed cDC1, effectively cross-primes CD8+ T cells and facilitates tumor-specific T cell responses. Etv6 is an ETS family transcription factor that controls hematopoietic stem and progenitor cell (HSPC) function and thrombopoiesis. We report that like HSPCs, cDCs express Etv6, but not its antagonist, ETS1, whereas interferon-producing plasmacytoid dendritic cells (pDCs) express both factors. Deletion of Etv6 in the bone marrow impaired the generation of cDC1-like cells in vitro and abolished the expression of signature marker CD8α on cDC1 in vivo. Moreover, Etv6-deficient primary cDC1 showed a partial reduction of cDC-specific and cDC1-specific gene expression and chromatin signatures and an aberrant up-regulation of pDC-specific signatures. Accordingly, DC-specific Etv6 deletion impaired CD8+ T cell cross-priming and the generation of tumor antigen–specific CD8+ T cells. Thus, Etv6 optimizes the resolution of cDC1 and pDC expression programs and the functional fitness of cDC1, thereby facilitating T cell cross-priming and tumor-specific responses.


Sign in / Sign up

Export Citation Format

Share Document