scholarly journals Driving Native-like Zonal Enthesis Formation in Engineered Ligaments Using Mechanical Boundary Conditions and β-Tricalcium Phosphate

2021 ◽  
Author(s):  
M. Ethan Brown ◽  
Jennifer L Puetzer

Fibrocartilaginous entheses are structurally complex tissues that translate load from elastic ligaments to stiff bone via complex zonal organization with gradients in organization, mineralization, and cell phenotype. Currently, these gradients, necessary for long-term mechanical function, are not recreated in soft tissue-to-bone healing or engineered replacements, leading to high failure rates. Previously, we developed a culture system which guides ligament fibroblasts to develop aligned native-sized collagen fibers using high density collagen gels and mechanical boundary conditions. These constructs hold great promise as ligament replacements, however functional ligament-to-bone attachments, or entheses, are required for long-term function in vivo. The objective of this study was to investigate the effect of compressive mechanical boundary conditions and the addition of beta tricalcium phosphate (βTCP), a known osteoconductive agent, on the development of zonal ligament-to-bone entheses. We found that compressive boundary clamps, that restrict cellular contraction and produce a zonal tensile-compressive environment, guide ligament fibroblasts to produce 3 unique zones of collagen organization, and zonal accumulation of glycosaminoglycans (GAGs), type II and type X collagen by 6 weeks of culture, ultimately resulting in similar organization and composition as immature bovine entheses. Further, βTCP under the clamp enhanced the maturation of these entheses, leading to increased GAG accumulation, sheet-like mineralization, and significantly improved tensile moduli, suggesting the initiation of endochondral ossification. This culture system produced some of the most organized entheses to date, closely mirroring early postnatal enthesis development, and provides an in vitro platform to better understand the cues that drive enthesis maturation in vivo.

2014 ◽  
Vol 28 (12) ◽  
pp. 1999-2011 ◽  
Author(s):  
Allyson Booth ◽  
Tammy Trudeau ◽  
Crystal Gomez ◽  
M. Scott Lucia ◽  
Arthur Gutierrez-Hartmann

The signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required. Here we directly examined the role of persistent Ras/MAPK signaling in differentiation, proliferation, and tumorigenesis of rat pituitary somatolactotrope GH4 cells. We stimulated Ras/MAPK signaling in a persistent, long-term manner (over 6 d) in GH4 cells using two distinct approaches: 1) a doxycycline-inducible, oncogenic V12Ras expression system; and 2) continuous addition of exogenous epidermal growth factor. We find that long-term activation of the Ras/MAPK pathway over 6 days promotes differentiation of the bihormonal somatolactotrope GH4 precursor cell into a prolactin-secreting, lactotrope cell phenotype in vitro and in vivo with GH4 cell xenograft tumors. Furthermore, we show that persistent activation of the Ras/MAPK pathway not only fails to promote cell proliferation, but also diminishes tumorigenic characteristics in GH4 cells in vitro and in vivo. These data demonstrate that activated MAPK promotes differentiation and is not sufficient to drive tumorigenesis, suggesting that pituitary lactotrope tumor cells have the ability to evade the tumorigenic fate that is often associated with Ras/MAPK activation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 47-48
Author(s):  
Marco Haselager ◽  
Eduard Perelaer ◽  
Arnon P. Kater ◽  
Eric Eldering

INTRODUCTION. Primary chronic lymphocytic leukemia (CLL) cells, despite originating from a proliferative disease, rapidly undergo apoptosis in vitro in absence of microenvironmental survival signals1. Although co-culture with stromal cells or the addition of soluble factors can increase and extend CLL survival, no system permits the long-term expansion of CLL cells in vitro2. The difficulties of mimicking a physiologic microenvironment supporting CLL cells hinder in vitro studies of proliferation, drug screens and prevent propagation of rare subclones. For other cancers, various types of 3D cultures have been introduced utilizing scaffolds, gels, spheroid cultures and fluidic systems, representing a more accurate representation of the in vivo microenvironment3. Unlike solid tumors, secondary lymphoid tissues where CLL cells proliferate in vivo, do not derive from a single stem cell progenitor. Developing an appropriate 3D in vitro culture system for CLL is of obvious importance and may contribute pathophysiological relevance to study long-term CLL proliferation and more accurate drug screening4,5. Within the field of CLL, attempts have focused on bone marrow stroma, but it may be biologically and clinically more relevant to investigate the lymph node niche as this is the critical site of CLL proliferation6. METHODS. Primary CLL cells were cultured in various 3D systems including hydrogels, hanging drop cultures and ultra-low attachment plates (ULA) plates in parallel to an optimal 2D system, consisting of the culture of primary CLL cells on a monolayer of CD40L-presenting fibroblasts (3T40) or 3T3 negative control fibroblasts. CLL cells were either cultured as PBMCs alone, with or without T cells, or co-cultured with 3T40 or primary lymph node fibroblasts. CLL cells were either stimulated directly with IL-2, IL-15, IL-21 and CpG and/or indirectly via a T cell stimulation of anti-CD3/CD28. RESULTS. After testing and comparing multiple systems for the in vitro culture of CLL cells, we optimized a novel CLL culture system utilizing ULA plates creating spheroids of PBMCs isolated from peripheral blood. Without the addition of soluble factors or stroma, primary CLL cells in the ULA 3D model could be maintained in culture for 6 weeks as opposed to 1 week in the 2D system. Aside from significantly promoting CLL survival, cultures could be expanded approximately 3-4-fold over a course of 6 weeks using the ULA 3D model. 3D cultures showed a more consistent and significantly increased CLL proliferation compared to 2D cultures, independent of IGHV mutation status, increasing the average proliferation index of 2.87 to 3.90 (n=10). Additionally, co-culture with LN-derived stromal cells further increased CLL proliferation, reaching a maximum of 8 generations (n=6) (Figure 1). Lastly, when PBMCs were stimulated with IL-2, IL-15, IL-21 and CpG, spheroids developed proliferation center-like structures after 4 weeks of culture. CONCLUSIONS. We established a lymph node-based 3D in vitro culture system for CLL leading to increased CLL proliferation and survival compared to 2D systems. The set-up allows long-term expansion of CLL cells in vitro, as well as formation of proliferation center-like structures. We are currently optimizing drug resistance studies, expansion of specific CLL subclones and performing competition experiments. References: 1. Hamilton et al., Mimicking the tumour microenvironment: three different co-culture systems induce a similar phenotype but distinct proliferative signals in primary chronic lymphocytic leukaemia cells, 2012. 2. Asslaber et al., Mimicking the microenvironment in chronic lymphocytic leukaemia - where does the journey go?, 2013. 3. Gurski et al., 3D Matrices for Anti-Cancer Drug Testing and Development, 2010. 4. Nunes et al., 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs, 2019. 5. Aljitwai et al., A novel three-dimensional stromal-based model for in vitro chemotherapy sensitivity testing of leukemia cells, 2014. 6. Van Gent et al., In vivo dynamics of stable chronic lymphocytic leukemia inversely correlates with somatic hypermutation levels and suggest no major leukemic turnover in bone marrow, 2008. Disclosures Kater: Genentech: Research Funding; Abbvie: Research Funding; Roche: Research Funding; Janssen: Research Funding; Celgene: Research Funding. Eldering:Celgene: Research Funding; Janssen: Research Funding; Genentech: Research Funding.


2018 ◽  
Author(s):  
Stefan Sieber ◽  
Annika Winter ◽  
Johanna Wachsmuth ◽  
Rhiannon David ◽  
Maria Stecklum ◽  
...  

AbstractMultipotent hematopoietic stem and progenitor cells HSPC reside in specialized stem cell niches within the bone marrow, that provide a suitable microenvironment for lifelong maintenance of the stem cells. Meaningful in vitro models recapitulating the in vivo stem cell niche biology can be employed for both basic research as well as for applied sciences and represent a powerful tool to reduce animal tests in preclinical studies. Recently we published the generation of an in vitro bone marrow niche model, capable of long-term cultivation of HSC based on an organ-on-a-chip platform. This study provides a detailed analysis of the 3D culture system including matrix environment analysis by SEM, transcriptome analysis and system intrinsic differentiation induction. Furthermore, the bone marrow on a chip model can serve to multiply and harvest HSPC, since repeated cell removal not compromised the functionality of the culture system. The prolongation of the culture time to 8 weeks demonstrate the capacity to apply the model in repeated drug testing experiments. The quality of the presented system is emphasized by the differentiation capacity of long-term cultivated HSPC in vitro and in vivo. Transplanted human HSPC migrated actively into the bone marrow of irradiated mice and contributed to the long-term reconstitution of the hematopoietic system after four and eight weeks of in vitro cultivation.The introduced system offers a multitude of possible applications to address a broad spectrum of questions regarding HSPC, the corresponding bone marrow niche biology, and pathological aberrations.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14689-e14689
Author(s):  
Mahesh Devarasetty ◽  
Samuel Herberg ◽  
Anthony Dominijanni ◽  
Ethan Willey-Shelkey ◽  
Aleksander Skardal ◽  
...  

e14689 Background: Microenvironmental mechanics have a tremendous effect on the progression, phenotype, and therapeutic response of cancer cells positioning it as a high-potential target for novel therapeutic development. Laboratory modeling of the microenvironment and its multitude of effects is imperative for developing new avenues of anti-cancer therapy that can target non-traditional vectors such as the extracellular matrix (ECM) and stromal cells. Researchers have developed in vitro models of the tumor microenvironment (TME) to meet this need. While in vitro modeling is an important step in therapeutic development, there are few studies that validate in vitro generated results to gold-standard in vivo models, and further, to patient-derived data. Previously, we have developed a model of the colorectal tumor microenvironment and found a connection between collagen ultrastructure and cancer cell phenotype. Using this characterized organoid model, we implant bioengineered TMEs into mice to track long-term growth and progression of cancer and compare our results to clinical biopsies. Methods: Tumor organoids are produced by combining stromal cells and type I collagen. Cancer cell spheroids are embedded into the organoid for long term observation. Organoids are either observed in vitro or implanted subcutaneously into mice for in vivo tracking. Results: Organoids retain structure and viability during long term culture in vitro and in vivo, and embedded cancer cells respond significantly differently depending on the architecture of the surrounding TME. Cancer cells assume a mesenchymal, invasive, and proliferative phenotype in unorganized TMEs, and revert to an epithelial phenotype in an ordered TME. In addition, analysis of biopsied tissue, across tumor grade, demonstrates a correlation between cancer cell phenotype and microenvironmental architecture. Conclusions: In all this is the first study to establish a connection between TME micro-structure and cancer cell phenotype consistently across three distinct research modalities. These results have the potential to pave the way for utilizing bioengineered microenvironmental models as therapeutic development platforms and for targeting TME micro-structure to control colorectal cancer cell progression.


1993 ◽  
Vol 3 (3) ◽  
pp. 181-195 ◽  
Author(s):  
Sean D. Mckenna ◽  
Irving Goldschneider

The selectivein vitrogeneration of rat, mouse, and human terminal deoxynucleotidyl transferase-positive (TdT+lymphoid cells in our long-term xenogeneic bone marrow (BM) culture system is characterized by physical interaction between the developing lymphocytes and mouse BM-adherent stromal cells and macrophages. In the present study, experiments in which micropor)us membrane culture inserts were inoculated with rat BM cells demonstrated that although the generation of primitive B-lineage lymphoid cells requires the presence of a mouse BM feeder layer, cognitive recognition events are not necessary. Similarly, cell-free (and serum-free) medium conditioned with mouse BM (but not thymus or spleen) adherent cells and stromal-cell lines therefrom supported the proliferation of early rat lymphoid cells in a dose-dependent manner. Double immunofluorescence for incorporated bromo-deoxyuridine (BrdU) and early B-lineage markers of rat BM lymphoid cells maintained in culture inserts or conditioned medium (CM), and studies of their in vitro andin vivodevelopmental potentials, indicated that the lymphoproliferative response resulted from the selective stimulation of lymphoid stem and/or progenitor cells. The most primitive of these target cells had a HIS24+HIS50-TdT-cμ-sIg-, pre-pro-B-cell phenotype. Whereas this subset normally constitutes less than 2% of B-lineage BM cellsin vivo, it comprises more than 25% of total lymphoid cellsin vitro. In addition, the number of TdT+cells, predominantly of the early pro-B-cell phenotype (HIS24+HIS50-TdT-cμ-sIg-), was increased approximately tenfold above input levels. Based on these and previous findings, a schematic model is proposed for the developmental pathway of early B-lineage cells in rat BM from the level of the committed (possibly common) lymphoid stem cell to that of the pre-B-cell.


Blood ◽  
2018 ◽  
Vol 131 (18) ◽  
pp. 2026-2035 ◽  
Author(s):  
Yohei Kawano ◽  
Georg Petkau ◽  
Christina Stehle ◽  
Pawel Durek ◽  
Gitta Anne Heinz ◽  
...  

Key Points We have established a novel culture system for long-term proliferating murine lymphoid progenitors without any genetic manipulation. The cultured lymphoid progenitors can differentiate to lymphoid and myeloid lineages in vitro and in vivo.


Author(s):  
Yong Du ◽  
Zhao Du ◽  
Hongping Zheng ◽  
Dan Wang ◽  
Shifeng Li ◽  
...  

Abstractγ-amino butyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA is also found in many peripheral tissues, where it has important functions during development. Here, we identified the existence of the GABA system in spermatogonial stem cells (SSCs) and found that GABA negatively regulates SSC proliferation. First, we demonstrated that GABA and its synthesizing enzymes were abundant in the testes 6 days postpartum (dpp), suggesting that GABA signaling regulates SSCs function in vivo. In order to directly examine the effect of GABA on SSC proliferation, we then established an in vitro culture system for long-term expansion of SSCs. We showed that GABAA receptor subunits, including α1, α5, β1, β2, β3 and γ3, the synthesizing enzyme GAD67, and the transporter GAT-1, are expressed in SSCs. Using phosphorylated histone H3 (pH3) staining, we demonstrated that GABA or the GABAAR-specific agonist muscimol reduced the proliferation of SSCs. This GABA regulation of SSC proliferation was shown to be independent of apoptosis using the TUNEL assay. These results suggest that GABA acts as a negative regulator of SSC proliferation to maintain the homeostasis of spermatogenesis in the testes.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Sign in / Sign up

Export Citation Format

Share Document