scholarly journals Altered low frequency brain rhythms precede changes in gamma power during tauopathy

2021 ◽  
Author(s):  
Fabio R Rodrigues ◽  
Amalia Papanikolaou ◽  
Joanna Holeniewska ◽  
Keith G Phillips ◽  
Aman B Saleem ◽  
...  

Alzheimer's disease and other dementias are associated with disruptions of electrophysiological brain activity, including low frequency and gamma rhythms. Many of these dementias are also associated with the malfunction of the membrane associated protein tau. Tauopathy disrupts neuronal function and the stability of synapses and is a key driver of neurodegeneration. Here we ask how brain rhythms are affected by tauopathy, at different stages of its progression. We performed local field potential recordings from visual cortex of rTg4510 and control animals at early stages of neurodegeneration (5 months) and at a more advanced stage where pathology is evident (8 months). We measured brain activity in the presence or absence of external visual stimulation, and while monitoring pupil diameter and locomotion to establish animal behavioural states. At 5 months, before substantial pathology, we found an increase in low frequency rhythms during resting state in tauopathic animals. This was because tauopathic animals entered intermittent periods of increased neural synchronisation, where activity across a wide band of low frequencies was strongly correlated. At 8 months, when the degeneration was more advanced, the increased synchronisation and low frequency power was accompanied by a reduction in power in the gamma range, with diverse effects across different components of the gamma rhythm. Our results indicate that slower rhythms are impaired earlier than gamma rhythms in tauopathy, suggesting that electrophysiological measurements can indicate both the presence and progression of tauopathic degeneration.

2018 ◽  
Author(s):  
Christian Keitel ◽  
Anne Keitel ◽  
Christopher SY Benwell ◽  
Christoph Daube ◽  
Gregor Thut ◽  
...  

Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: One regards them mostly as synchronised (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses (classically termed steady-state responses, or SSRs) that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha-band (8-13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasising stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yuchen Zhou ◽  
Alex Sheremet ◽  
Jack P. Kennedy ◽  
Nicholas M. DiCola ◽  
Carolina B. Maciel ◽  
...  

The hippocampal local field potential (LFP) exhibits a strong correlation with behavior. During rest, the theta rhythm is not prominent, but during active behavior, there are strong rhythms in the theta, theta harmonics, and gamma ranges. With increasing running velocity, theta, theta harmonics and gamma increase in power and in cross-frequency coupling, suggesting that neural entrainment is a direct consequence of the total excitatory input. While it is common to study the parametric range between the LFP and its complementing power spectra between deep rest and epochs of high running velocity, it is also possible to explore how the spectra degrades as the energy is completely quenched from the system. Specifically, it is unknown whether the 1/f slope is preserved as synaptic activity becomes diminished, as low frequencies are generated by large pools of neurons while higher frequencies comprise the activity of more local neuronal populations. To test this hypothesis, we examined rat LFPs recorded from the hippocampus and entorhinal cortex during barbiturate overdose euthanasia. Within the hippocampus, the initial stage entailed a quasi-stationary LFP state with a power-law feature in the power spectral density. In the second stage, there was a successive erosion of power from high- to low-frequencies in the second stage that continued until the only dominant remaining power was <20 Hz. This stage was followed by a rapid collapse of power spectrum toward the absolute electrothermal noise background. As the collapse of activity occurred later in hippocampus compared with medial entorhinal cortex, it suggests that the ability of a neural network to maintain the 1/f slope with decreasing energy is a function of general connectivity. Broadly, these data support the energy cascade theory where there is a cascade of energy from large cortical populations into smaller loops, such as those that supports the higher frequency gamma rhythm. As energy is pulled from the system, neural entrainment at gamma frequency (and higher) decline first. The larger loops, comprising a larger population, are fault-tolerant to a point capable of maintaining their activity before a final collapse.


2021 ◽  
Author(s):  
Mysin I.E.

AbstractWe propose a model of the main rhythms in the hippocampal CA1 field: theta rhythm, slow, middle, and fast gamma rhythms, and ripples oscillations. We have based this on data obtained from animals behaving freely. We have considered the modes of neuronal discharges and the occurrence of local field potential (LFP) oscillations in the theta and non-theta states at different inputs from the CA3 field, the medial entorhinal cortex, and the medial septum. In our work, we tried to reproduce the main experimental phenomena about rhythms in the CA1 field: the coupling of neurons to the phase of rhythms, cross-rhythm phase-phase and phase-amplitude coupling. Using computational experiments, we have proved the hypothesis that the descending phase of the theta rhythm in the CA1 field is formed by the input from the CA3 field via the Shaffer collaterals, and the ascending phase of the theta rhythm is formed by the inhibitory postsynaptic potentials from CCK basket cells. The slow gamma rhythm is coupled to the descending phase of the theta rhythm, since it also depends on the arrival of the signal via the Shaffer collaterals. The middle gamma rhythm is formed by the excitatory postsynaptic potentials of the principal neurons of the third layer of the entorhinal cortex, corresponds to experimental data. We were able to unite in a single mathematical model several theoretical ideas about the mechanisms of rhythmic processes in the CA1 field of the hippocampus.


2020 ◽  
Author(s):  
Y. Zhou ◽  
A. Sheremet ◽  
J. P. Kennedy ◽  
Nicholas M. DiCola ◽  
Carolina B. Maciel ◽  
...  

AbstractThe hippocampal local field potential (LFP) exhibits a strong correlation with behavior. During rest, the theta rhythm is not prominent, but during active behavior, there are strong rhythms in the theta, theta harmonics, and gamma ranges. With increasing running velocity, theta, theta harmonics and gamma increase in power and in cross-frequency coupling, suggesting that neural entrainment is a direct consequence of the total excitatory input. While it is common to study the parametric range between the LFP and its complementing power spectra between deep rest and epochs of high running velocity, it is also possible to explore how the spectra degrades as the energy is completely quenched from the system. Specifically, it is unknown whether the 1/f slope is preserved as synaptic activity becomes diminished, as low frequencies are generated by large pools of neurons while higher frequencies comprise the activity of more local neuronal populations. To test this hypothesis, we examined rat LFPs recorded from the hippocampus and entorhinal cortex during barbiturate overdose euthanasia. Within the hippocampus, the initial stage entailed a quasi-stationary stage when the LFP spectrum exhibited power-law feature while the frequency components over 20 Hz exhibited a power decay with a similar decay rate. This stage was followed by a rapid collapse of power spectrum towards the absolute electrothermal noise background. As the collapse of activity occurred later in hippocampus compared with medial entorhinal cortex or visual cortex, it suggests that the ability of a neural network to maintain the 1/f slope with decreasing energy is a function of general connectivity. Broadly, these data support the energy cascade theory where there is a cascade of energy from large cortical populations into smaller loops, such as those that supports the higher frequency gamma rhythm. As energy is pulled from the system, neural entrainment at gamma frequency (and higher) decline first. The larger loops, comprising a larger population, are fault-tolerant to a point capable of maintaining their activity before a final collapse.


2012 ◽  
Vol 24 (6) ◽  
pp. 1314-1330 ◽  
Author(s):  
Elsie Premereur ◽  
Wim Vanduffel ◽  
Peter Janssen

Oscillatory brain activity is attracting increasing interest in cognitive neuroscience. Numerous EEG (magnetoencephalography) and local field potential (LFP) measurements have related cognitive functions to different types of brain oscillations, but the functional significance of these rhythms remains poorly understood. Despite its proven value, LFP activity has not been extensively tested in the macaque lateral intraparietal area (LIP), which has been implicated in a wide variety of cognitive control processes. We recorded action potentials and LFPs in area LIP during delayed eye movement tasks and during a passive fixation task, in which the time schedule was fixed so that temporal expectations about task-relevant cues could be formed. LFP responses in the gamma band discriminated reliably between saccade targets and distractors inside the receptive field (RF). Alpha and beta responses were much less strongly affected by the presence of a saccade target, however, but rose sharply in the waiting period before the go signal. Surprisingly, conditions without visual stimulation of the LIP-RF-evoked robust LFP responses in every frequency band—most prominently in those below 50 Hz—precisely time-locked to the expected time of stimulus onset in the RF. These results indicate that in area LIP, oscillations in the LFP, which reflect synaptic input and local network activity, are tightly coupled to the temporal expectation of task-relevant cues.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


Sign in / Sign up

Export Citation Format

Share Document