scholarly journals Visualizing conformational space of functional biomolecular complexes by deep manifold learning

2021 ◽  
Author(s):  
Zhaolong Wu ◽  
Enbo Chen ◽  
Shuwen Zhang ◽  
Yinping Ma ◽  
Congcong Liu ◽  
...  

The cellular functions are executed by biological macromolecular complexes in nonequilibrium dynamic processes, which exhibit a vast diversity of conformational states. Solving conformational continuum of important biomolecular complexes at atomic level is essential to understand their functional mechanisms and to guide structure-based drug discovery. Here we introduce a deep learning framework, named AlphaCryo4D, which enables atomic-level cryogenic electron microscopy reconstructions of conformational continuum. AlphaCryo4D integrates 3D deep residual learning with manifold embedding of energy landscapes, which directs 3D clustering of markedly improved accuracy via an energy-based particle-voting algorithm. By applications of this approach to analyze five experimental datasets, we examine its generality in breaking resolution limit of visualizing dynamic components of functional complexes, in discovering 'invisible' lowly populated intermediates and in exploring their hidden conformational space. Our approach expands the realm of structural ensemble determination to the nonequilibrium regime at atomic level, thus potentially transforming biomedical research and therapeutic development.

2021 ◽  
Author(s):  
Somi Patranabis

Receptor Tyrosine Kinases (RTKs) are an important class of receptors involved in regulating different cellular functions. The usual pathway of RTK activation involves specific ligand binding, dimerization and trans-autophosphorylation. Recently, RTK has been extensively studied as they have potential applications in targeted cancer therapy. RTK-based therapeutic strategies are promising because dysfunction of RTK is connected to a variety of diseases. More specifically, RTK has been widely associated with different types of cancer and related diseases. The chapter aims to cover recent advances and challenges in RTK related research, to get an overview of the problems and possibilities associated with targeted therapy. This will help in deciphering novel therapeutic applications in the future.


Author(s):  
Yimin Zhao ◽  
Yizhen Zhao ◽  
Bingquan Peng ◽  
Lei Zhang

: Structural biology develops rapidly as time goes on. Based only on static structure analysis of biomaterials is not enough to satisfy the studies of their functional mechanisms, with a huge obstacle for the dynamic process of biological complexes. The rapid development of cryo-electron microscopy(cryo-EM) technology makes that it is possible to observe the near-atomic resolution structures and dynamic nature of biological macromolecules, in the fields of dynamic characteristics of proteins, protein-protein interactions, molecular recognition, and structure-based design. In this review, we systematically elaborate the contribution of cryo-EM technology in the field of biomaterials such as ribosome motion, membrane protein structure and conformational space, dynamic transmission within the plasma membrane and clinical applications. We also put forwards a new standpoint in the development of cryo-EM technology.


2014 ◽  
Vol 42 (15) ◽  
pp. 9562-9572 ◽  
Author(s):  
Rasmus Fonseca ◽  
Dimitar V. Pachov ◽  
Julie Bernauer ◽  
Henry van den Bedem

Abstract Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention.


2012 ◽  
Vol 20 (4) ◽  
pp. 30-36 ◽  
Author(s):  
Paolo Longo ◽  
Paul J. Thomas ◽  
Ray D. Twesten

With advancements in aberration correction, the spatial resolution of scanning transmission electron microscopy (STEM) has been enormously improved. In addition to the reduction of the STEM probe size, a dramatic increase in the STEM probe current has been realized, leading to the routine acquisition of high-resolution elemental and chemical maps using electron energy loss spectrometry (EELS). Using EELS combined with these advanced STEM instruments, atomic-level resolution information can be obtained from various types of materials, revealing the nature of interfaces, elemental distribution, presence of defects, and much more. In addition to simple elemental composition distributions, EELS is capable of delivering information about the chemical bonding, local atomic coordination, oxidation states, band gaps, and chemical phases of a broad range of materials at the fundamental resolution limit of the property being probed. Atomic-level EELS maps of these fundamental material properties can now be obtained with the acquisition time, to a large extent, limited only by the speed of the EELS spectrometer and not by the signal being measured. The availability of fast EELS spectrometers with large angular collection efficiencies has closed the gap between the rate of signal generation in the specimen and the speed at which this signal can be detected. This significantly increases the amount of information that can be acquired using EELS. Using the most recent generation of spectrometers, EELS data can be acquired at well over 1,000 spectra per second with a high-duty cycle. Fifth-order spectral aberration correction in this generation of spectrometers allows the use of the large collection angles needed to match the increased convergence angle that Cs-probe-corrected systems present, improving collection efficiency while maintaining energy resolution. These advances, when taken together, result in a well matched source/detector system capable of recording high-energy EELS edges at atomic resolution at a rate fast enough to limit electron beam damage to the sample.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiangling Xiong ◽  
Lianlian Yan ◽  
Cheng Zou ◽  
Kai Wang ◽  
Mengjie Chen ◽  
...  

AbstractIntegrins are the adhesion molecules and transmembrane receptors that consist of α and β subunits. After binding to extracellular matrix components, integrins trigger intracellular signaling and regulate a wide spectrum of cellular functions, including cell survival, proliferation, differentiation and migration. Since the pattern of integrins expression is a key determinant of cell behavior in response to microenvironmental cues, deregulation of integrins caused by various mechanisms has been causally linked to cancer development and progression in several solid tumor types. In this review, we discuss the integrin signalosome with a highlight of a few key pro-oncogenic pathways elicited by integrins, and uncover the mutational and transcriptomic landscape of integrin-encoding genes across human cancers. In addition, we focus on the integrin-mediated control of cancer stem cell and tumor stemness in general, such as tumor initiation, epithelial plasticity, organotropic metastasis and drug resistance. With insights into how integrins contribute to the stem-like functions, we now gain better understanding of the integrin signalosome, which will greatly assist novel therapeutic development and more precise clinical decisions.


2020 ◽  
Author(s):  
Manoj K Rathinaswamy ◽  
Zied Gaieb ◽  
Kaelin D Fleming ◽  
Chiara Borsari ◽  
Noah J Harris ◽  
...  

AbstractClass I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the p110γ subunit playing a key role in immune signalling. PI3Kγ is a key factor in inflammatory diseases, and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the c-terminus can inactivate or activate enzyme activity. Screening of small molecule inhibitors using HDX-MS revealed that activation loop binding inhibitors induce allosteric conformational changes that mimic those seen for the R1021C mutant. Structural analysis of clinically advanced PI3K inhibitors revealed novel binding pockets that can be exploited for further therapeutic development. Overall this work provides unique insight into the regulatory mechanisms that control PI3Kγ kinase activity, and shows a framework for the design of PI3K isoform and mutant selective inhibitors.


2020 ◽  
Vol 21 (9) ◽  
pp. 3258
Author(s):  
Min Jung Kim ◽  
Jong Rip Choi ◽  
Nara Tae ◽  
Tae Min Wi ◽  
Kristine M. Kim ◽  
...  

Mucin1 (MUC1) is aberrantly glycosylated and overexpressed in various cancers, and it plays a crucial role in cancerogenesis. MUC1 is a type I membranous protein composed of α and β subunits. MUC1-α can be cleaved in cancers, exposing MUC1-β (MUC1-C). MUC1-C is involved with multiple cancer cellular functions, which makes it an attractive target for cancer treatment. However, its multifunctional mechanisms have not been fully elucidated and there has not been a successful therapeutic development against MUC1-C. Through a phage display process, we isolated the specific antibodies for the extracellular domain of MUC1-C. The relevant full IgG antibodies were produced successfully from mammalian cells and validated for their MUC1-C specificities through ELISA, dual FACS analysis, BLI assay, and confocal image analysis. In the comparison with reference antibody, elected antibodies showed characteristic bindings on target antigens. In the functionality assessment of high-ranking antibodies, SKM1-02, -13, and -20 antibodies highly inhibited invasion by triple-negative breast cancer (TNBC) cells and the SKM1-02 showed strong growth inhibition of cancer cells. Our results showed that these MUC1-C specific antibodies will be important tools for the understanding of MUC1 oncogenesis and are also highly effective therapeutic candidates against human breast cancers, especially TNBC cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Manoj K Rathinaswamy ◽  
Zied Gaieb ◽  
Kaelin D Fleming ◽  
Chiara Borsari ◽  
Noah J Harris ◽  
...  

Class I Phosphoinositide 3-kinases (PI3Ks) are master regulators of cellular functions, with the class IB PI3K catalytic subunit (p110g) playing key roles in immune signalling. p110g is a key factor in inflammatory diseases, and has been identified as a therapeutic target for cancers due to its immunomodulatory role. Using a combined biochemical/biophysical approach, we have revealed insight into regulation of kinase activity, specifically defining how immunodeficiency and oncogenic mutations of R1021 in the C-terminus can inactivate or activate enzyme activity. Screening of inhibitors using HDX-MS revealed that activation loop-binding inhibitors induce allosteric conformational changes that mimic those in the R1021C mutant. Structural analysis of advanced PI3K inhibitors in clinical development revealed novel binding pockets that can be exploited for further therapeutic development. Overall this work provides unique insights into regulatory mechanisms that control PI3Kg kinase activity, and shows a framework for the design of PI3K isoform and mutant selective inhibitors.


2016 ◽  
Vol 62 (3) ◽  
pp. 311-317 ◽  
Author(s):  
I.B. Zavodnik

Са2+ is a very important and versatile intracellular signal which controls numerous biochemical and physiological (pathophysiological) processes in the cell. Good evidence exists that mitochondria are sensors, decoders and regulators of calcium signaling. Precise regulation of calcium signaling in the cell involves numerous molecular targets, which induce and decode changes of Са2+ concentrations in the cell (pumps, channels, Са2+-binding proteins, Са2+-dependent enzymes, localized in the cytoplasm and organelles). Mitochondrial Са2+ uniporter accumulates excess of Са2+ in mitochondria, while Na+/Са2+- and H+/Са2+-antiporters extrude Са2+ in the cytoplasm. Mitochondrial Са2+ overloading results in formation of mitochondria permeability transition pores which play an important role in cell death under many pathological conditions. Mitochondria regulate Са2+ homeostasis and control important cellular functions such as metabolism, proliferation, survival. Identification of cellular and mitochondrial Ca2+ transporters and understanding their functional mechanisms open up new prospects for their using as therapeutic targets


Author(s):  
J. Frank ◽  
P.-Y. Sizaret ◽  
A. Verschoor ◽  
J. Lamy

The accuracy with which the attachment site of immunolabels bound to macromolecules may be localized in electron microscopic images can be considerably improved by using single particle averaging. The example studied in this work showed that the accuracy may be better than the resolution limit imposed by negative staining (∽2nm).The structure used for this demonstration was a halfmolecule of Limulus polyphemus (LP) hemocyanin, consisting of 24 subunits grouped into four hexamers. The top view of this structure was previously studied by image averaging and correspondence analysis. It was found to vary according to the flip or flop position of the molecule, and to the stain imbalance between diagonally opposed hexamers (“rocking effect”). These findings have recently been incorporated into a model of the full 8 × 6 molecule.LP hemocyanin contains eight different polypeptides, and antibodies specific for one, LP II, were used. Uranyl acetate was used as stain. A total of 58 molecule images (29 unlabelled, 29 labelled with antl-LPII Fab) showing the top view were digitized in the microdensitometer with a sampling distance of 50μ corresponding to 6.25nm.


Sign in / Sign up

Export Citation Format

Share Document