scholarly journals Large-scale integration of DNA methylation and gene expression array platforms

2021 ◽  
Author(s):  
Eva E Lancaster ◽  
Vladimir I Vladimirov ◽  
Brien P Riley ◽  
Joseph W Landry ◽  
Roxann Roberson-Nay ◽  
...  

Epigenome-wide association studies (EWAS) aim to provide evidence that marks of DNA methylation (DNAm) have downstream consequences that can result in the development of human diseases. Although these methods have been successful in identifying DNAm patterns associated with disease states, any further characterization of etiologic mechanisms remains elusive. This knowledge gap does not originate from a lack of DNAm-trait associations, but rather stems from study design issues that affect the interpretability of EWAS results. Despite known limitations in predicting the function of a particular CpG site, most EWAS maintain the broad assumption that altered DNAm results in a concomitant change of transcription at the most proximal gene. This study integrated DNAm and gene expression (GE) measurements in two cohorts, the Adolescent and Young Adult Twin Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve the understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. CpG sites associated with trans GE were also enriched in areas of known regulatory significance, including enhancer regions. These results highlight issues with restricting DNAm-transcript annotations to small genomic intervals and question the validity of assuming a canonical cis DNAm-GE pathway. Based on these findings, the interpretation of EWAS results is limited in studies without multi-omic support and further research should identify genomic regions in which GE-associated DNAm is overrepresented.

2018 ◽  
Author(s):  
Charlie Hatcher ◽  
Caroline L. Relton ◽  
Tom R. Gaunt ◽  
Tom G. Richardson

AbstractIntegrative approaches which harness large-scale molecular datasets can help develop mechanistic insight into findings from genome-wide association studies (GWAS). We have performed extensive analyses to uncover transcriptional and epigenetic processes which may play a role in neurological trait variation.This was undertaken by applying Bayesian multiple-trait colocalization systematically across the genome to identify genetic variants responsible for influencing intermediate molecular phenotypes as well as neurological traits. In this analysis we leveraged high dimensional quantitative trait loci data derived from prefrontal cortex tissue (concerning gene expression, DNA methylation and histone acetylation) and GWAS findings for 5 neurological traits (Neuroticism, Schizophrenia, Educational Attainment, Insomnia and Alzheimer’s disease).There was evidence of colocalization for 118 associations suggesting that the same underlying genetic variant influenced both nearby gene expression as well as neurological trait variation. Of these, 73 associations provided evidence that the genetic variant also influenced proximal DNA methylation and/or histone acetylation. These findings support previous evidence at loci where epigenetic mechanisms may putatively mediate effects of genetic variants on traits, such as KLC1 and schizophrenia. We also uncovered evidence implicating novel loci in neurological disease susceptibility, including genes expressed predominantly in brain tissue such as MDGA1, KIRREL3 and SLC12A5.An inverse relationship between DNA methylation and gene expression was observed more than can be accounted for by chance, supporting previous findings implicating DNA methylation as a transcriptional repressor. Our study should prove valuable in helping future studies prioritise candidate genes and epigenetic mechanisms for in-depth functional follow-up analyses.


2020 ◽  
Vol 318 (3) ◽  
pp. L549-L561
Author(s):  
Zhijun Zeng ◽  
Karolin F. Meyer ◽  
Khosbayar Lkhagvadorj ◽  
Wierd Kooistra ◽  
Marjan Reinders-Luinge ◽  
...  

Prenatal smoke exposure (PSE) is associated with reduced birth weight, impaired fetal development, and increased risk for diseases later in life. Changes in DNA methylation may be involved, as multiple large-scale epigenome-wide association studies showed that PSE is robustly associated with DNA methylation changes in blood among offspring in early life. Insulin-like growth factor-1 (IGF1) is important in growth, differentiation, and repair processes after injury. However, no studies investigated the organ-specific persistence of PSE-induced methylation change of Igf1 into adulthood. Based on our previous studies on the PSE effect on Igf1 promoter methylation in fetal and neonatal mouse offspring, we now have extended our studies to adulthood. Our data show that basal Igf1 promoter methylation generally increased in the lung but decreased in the liver (except for 2 persistent CpG sites in both organs) across three different developmental stages. PSE changed Igf1 promoter methylation in all three developmental stages, which was organ and sex specific. The PSE effect was less pronounced in adult offspring compared with the fetal and neonatal stages. In addition, the PSE effect in the adult stage was more pronounced in the lung compared with the liver. For most CpG sites, an inverse correlation was found for promoter methylation and mRNA expression when the data of all three stages were combined. This was more prominent in the liver. Our findings provide additional evidence for sex- and organ-dependent prenatal programming, which supports the developmental origins of health and disease (DOHaD) hypothesis.


2019 ◽  
Vol 48 (3) ◽  
pp. 887-898 ◽  
Author(s):  
Tom G Richardson ◽  
Rebecca C Richmond ◽  
Teri-Louise North ◽  
Gibran Hemani ◽  
George Davey Smith ◽  
...  

Abstract Background There is mounting evidence that our environment and lifestyle has an impact on epigenetic regulatory mechanisms, such as DNA methylation. It has been suggested that these molecular processes may mediate the effect of risk factors on disease susceptibility, although evidence in this regard has been challenging to uncover. Using genetic variants as surrogate variables, we have used two-sample Mendelian randomization (2SMR) to investigate the potential implications of putative changes to DNA methylation levels on disease susceptibility. Methods To illustrate our approach, we identified 412 CpG sites where DNA methylation was associated with prenatal smoking. We then applied 2SMR to investigate potential downstream effects of these putative changes on 643 complex traits using findings from large-scale genome-wide association studies. To strengthen evidence of mediatory mechanisms, we used multiple-trait colocalization to assess whether DNA methylation, nearby gene expression and complex trait variation were all influenced by the same causal genetic variant. Results We identified 22 associations that survived multiple testing (P < 1.89 × 10–7). In-depth follow-up analyses of particular note suggested that the associations between DNA methylation at the ASPSCR1 and REST/POL2RB gene regions, both linked with reduced lung function, may be mediated by changes in gene expression. We validated associations between DNA methylation and traits using independent samples from different stages across the life course. Conclusion Our approach should prove valuable in prioritizing CpG sites that may mediate the effect of causal risk factors on disease. In-depth evaluations of findings are necessary to robustly disentangle causality from alternative explanations such as horizontal pleiotropy.


2020 ◽  
Author(s):  
David W. McKellar ◽  
Lauren D. Walter ◽  
Leo T. Song ◽  
Madhav Mantri ◽  
Michael F.Z. Wang ◽  
...  

ABSTRACTSkeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not provide spatial information that is needed to understand the context in which myogenic differentiation occurs. Here, we demonstrate how large-scale integration of new and public single-cell and spatial transcriptomic data can overcome these limitations. We created a large-scale single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 79 public single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting compendium includes nearly 350,000 cells and spans a wide range of ages, injury, and repair conditions. Combined, these data enabled identification of the predominant cell types in skeletal muscle with robust, consensus gene expression profiles, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro/adipogenic progenitors marked by stem potential, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem-cell quiescence to myofiber maturation and identified rare, short-lived transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. This analysis identified the temporal variation in the colocalization of immune cell subtype interactions with myogenic progenitors during injury recovery. We provide a public web tool to enable interactive exploration and visualization of this rich single-cell transcriptomic resource. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


Sign in / Sign up

Export Citation Format

Share Document