scholarly journals Aged mouse ovarian immune milieu shows a shift towards adaptive immunity and attenuated cell function

2021 ◽  
Author(s):  
Tal Ben Yaakov ◽  
Tanya Wasserman ◽  
Yonatan Savir

The immune system plays a major role in maintaining many physiological processes in the reproductive system. However, a complete characterization of the immune milieu in the ovary, and particularly how it is affected by maternal aging, is still lacking. In this work, we utilize single-cell RNA sequencing and flow cytometry to construct a complete description of the murine ovarian immune system and its changes along with pre-estropause aging. We show that the ovarian immune cells composition undergoes an extensive shift with age towards adaptive immunity. We analyze the effect of aging on gene expression and chemokine and cytokine networks and show an overall decreased expression of inflammatory mediators together with an increased senescent cells recognition. Our results reveal the changes in the aging ovarian immune system of the fertile female as it copes with the inflammatory stimulations during repeated cycles and the increasing need for clearance of accumulating atretic follicles.

2014 ◽  
Vol 54 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Hongmei Lang ◽  
Zhihua Ai ◽  
Zhiqing You ◽  
Yong Wan ◽  
Wei Guo ◽  
...  

MicroRNAs (miRNAs) have been implicated in a variety of physiological processes, however, the function of miRNAs in insulin secretion and type 2 diabetes is still unclear. Stxbp1 plays an essential role in exocytosis, and is crucial for insulin secretion. In this study, we focused on the molecular mechanism of Stxbp1 in insulin secretion by identifying its upstream regulators: miR-218 and miR-322. The expression of Stxbp1 was significantly increased in isolated mouse islets exposed to high levels of glucose within 1 h; while two of its predicted upstream miRNAs were found to be downregulated. Further study found that miR-218 and miR-322 directly interact with Stxbp1 by targeting the 3′UTR of its mRNA. MIN6 cells overexpressing the two miRNAs showed a sharp decline in insulin secretion and a decreased sensitivity to glucose; while the inhibition of the two miRNAs promoted insulin secretion. However, islets treated with prolonged high levels of glucose, which is known as glucolipotoxicity, displayed relatively high expression of miR-218 and miR-322, and a reduced level of expression of Stxbp1 accompanied by the blocking of insulin secretion. In summary, this study identified a pathway consisting of miR-218/322 and Stxbp1 in insulin secretion, contributing to a network of β-cell function involving miRNA.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Author(s):  
G. Meneghesso ◽  
E. Zanoni ◽  
P. Colombo ◽  
M. Brambilla ◽  
R. Annunziata ◽  
...  

Abstract In this work, we present new results concerning electrostatic discharge (ESD) robustness of 0.6 μm CMOS structures. Devices have been tested according to both HBM and socketed CDM (sCDM) ESD test procedures. Test structures have been submitted to a complete characterization consisting in: 1) measurement of the tum-on time of the protection structures submitted to pulses with very fast rise times; 2) ESD stress test with the HBM and sCDM models; 3) failure analysis based on emission microscopy (EMMI) and Scanning Electron Microscopy (SEM).


2019 ◽  
Vol 125 (1) ◽  
pp. 10008 ◽  
Author(s):  
Bat-el Friedman ◽  
Atanu Rajak ◽  
Emanuele G. Dalla Torre

2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


2020 ◽  
Vol 21 (18) ◽  
pp. 6623 ◽  
Author(s):  
Marc Bienz ◽  
Salima Ramdani ◽  
Hans Knecht

Our understanding of the tumorigenesis of classical Hodgkin lymphoma (cHL) and the formation of Reed–Sternberg cells (RS-cells) has evolved drastically in the last decades. More recently, a better characterization of the signaling pathways and the cellular interactions at play have paved the way for new targeted therapy in the hopes of improving outcomes. However, important gaps in knowledge remain that may hold the key for significant changes of paradigm in this lymphoma. Here, we discuss the past, present, and future of cHL, and review in detail the more recent discoveries pertaining to genetic instability, anti-apoptotic signaling pathways, the tumoral microenvironment, and host-immune system evasion in cHL.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Qun Chen ◽  
Shweta Chhajed ◽  
Tong Zhang ◽  
Joseph M. Collins ◽  
Qiuying Pang ◽  
...  

AbstractDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in a leuc:ipmdh1 double mutants resulted in aggregated changes of GLS profiles compared to either leuc or ipmdh1 single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 813
Author(s):  
Norwin Kubick ◽  
Pavel Klimovich ◽  
Patrick Henckell Flournoy ◽  
Irmina Bieńkowska ◽  
Marzena Łazarczyk ◽  
...  

Understanding the evolution of interleukins and interleukin receptors is essential to control the function of CD4+ T cells in various pathologies. Numerous aspects of CD4+ T cells’ presence are controlled by interleukins including differentiation, proliferation, and plasticity. CD4+ T cells have emerged during the divergence of jawed vertebrates. However, little is known about the evolution of interleukins and their origin. We traced the evolution of interleukins and their receptors from Placozoa to primates. We performed phylogenetic analysis, ancestral reconstruction, HH search, and positive selection analysis. Our results indicated that various interleukins' emergence predated CD4+ T cells divergence. IL14 was the most ancient interleukin with homologs in fungi. Invertebrates also expressed various interleukins such as IL41 and IL16. Several interleukin receptors also appeared before CD4+ T cells divergence. Interestingly IL17RA and IL17RD, which are known to play a fundamental role in Th17 CD4+ T cells first appeared in mollusks. Furthermore, our investigations showed that there is not any single gene family that could be the parent group of interleukins. We postulate that several groups have diverged from older existing cytokines such as IL4 from TGFβ, IL10 from IFN, and IL28 from BCAM. Interleukin receptors were less divergent than interleukins. We found that IL1R, IL7R might have diverged from a common invertebrate protein that contained TIR domains, conversely, IL2R, IL4R and IL6R might have emerged from a common invertebrate ancestor that possessed a fibronectin domain. IL8R seems to be a GPCR that belongs to the rhodopsin-like family and it has diverged from the Somatostatin group. Interestingly, several interleukins that are known to perform a critical function for CD4+ T cells such as IL6, IL17, and IL1B have gained new functions and evolved under positive selection. Overall evolution of interleukin receptors was not under significant positive selection. Interestingly, eight interleukin families appeared in lampreys, however, only two of them (IL17B, IL17E) evolved under positive selection. This observation indicates that although lampreys have a unique adaptive immune system that lacks CD4+ T cells, they could be utilizing interleukins in homologous mode to that of the vertebrates' immune system. Overall our study highlights the evolutionary heterogeneity within the interleukins and their receptor superfamilies and thus does not support the theory that interleukins evolved solely in jawed vertebrates to support T cell function. Conversely, some of the members are likely to play conserved functions in the innate immune system.


Sign in / Sign up

Export Citation Format

Share Document