scholarly journals A sensitive and rapid wastewater test for SARS-COV-2 and its use for the early detection of a cluster of cases in a remote community

Author(s):  
Jade Daigle ◽  
Kathleen Racher ◽  
Justin Hazenberg ◽  
Allan Yeoman ◽  
Heather Hannah ◽  
...  

Throughout the COVID-19 pandemic, wastewater surveillance has been used to monitor trends in SARS-CoV-2 prevalence in the community. A major challenge in establishing wastewater surveillance programs, especially in remote areas, is the need for a well-equipped laboratory for sample analysis. Currently, no options exist for rapid, sensitive, mobile, and easy-to-use wastewater tests for SARS-CoV-2. The performance of the GeneXpert System, which offers cartridge-based, rapid molecular clinical testing for SARS-CoV-2 in a portable platform, was evaluated using wastewater as the input. The GeneXpert demonstrated a SARS-CoV-2 limit of detection in wastewater below 32 copies/mL with a sample processing time of less than an hour. Using wastewater samples collected from multiple sites across Canada during February and March 2021, a high overall agreement (97.8%) was observed between the GeneXpert assay and laboratory-developed tests regarding the presence or absence of SARS-CoV-2. Additionally, with the use of centrifugal filters the detection threshold of the GeneXpert system was improved to <10 copies/mL in wastewater. Finally, to support on-site wastewater surveillance, GeneXpert testing was implemented in Yellowknife, a remote community in Northern Canada where its use successfully alerted public health authorities to undetected transmission of COVID-19. The identification of SARS-CoV-2 in wastewater triggered clinical testing of recent travelers and identification of new COVID-19 cases/clusters. Taken together, these results suggest the GeneXpert is a viable option for surveillance of SARS-CoV-2 in wastewater in locations that do not have access to established testing laboratories.

Author(s):  
Jade Daigle ◽  
Kathleen Racher ◽  
Justin Hazenberg ◽  
Allan Yeoman ◽  
Heather Hannah ◽  
...  

Throughout the COVID-19 pandemic, wastewater surveillance has been used to monitor trends in SARS-CoV-2 prevalence in the community. A major challenge in establishing wastewater surveillance programs, especially in remote areas, is the need for a well-equipped laboratory for sample analysis. Currently, no options exist for rapid, sensitive, mobile, and easy-to-use wastewater tests for SARS-CoV-2. The performance of the GeneXpert System, which offers cartridge-based, rapid molecular clinical testing for SARS-CoV-2 in a portable platform, was evaluated using wastewater as the input. The GeneXpert demonstrated a SARS-CoV-2 limit of detection in wastewater below 32 copies/mL with a sample processing time of less than an hour. Using wastewater samples collected from multiple sites across Canada during February and March 2021, a high overall agreement (97.8%) was observed between the GeneXpert assay and laboratory-developed tests regarding the presence or absence of SARS-CoV-2. Additionally, with the use of centrifugal filters the detection threshold of the GeneXpert system was improved to <10 copies/mL in wastewater. Finally, to support on-site wastewater surveillance, GeneXpert testing was implemented in Yellowknife, a remote community in Northern Canada where its use successfully alerted public health authorities to undetected transmission of COVID-19. The identification of SARS-CoV-2 in wastewater triggered clinical testing of recent travelers and identification of new COVID-19 cases/clusters. Taken together, these results suggest the GeneXpert is a viable option for surveillance of SARS-CoV-2 in wastewater in locations that do not have access to established testing laboratories. Importance: Wastewater-based surveillance is a powerful tool that provides an unbiased measure of COVID-19 prevalence in a community. This work describes a sensitive wastewater rapid test for SARS-CoV-2 based on a widely distributed technology, the GeneXpert. The advantages of an easy-to-use wastewater test for SARS-CoV-2 are clear – it supports surveillance in remote communities, improves access to testing, and provides faster results allowing for an immediate public health response. The application of wastewater rapid testing in a remote community facilitated the detection of a COVID-19 cluster and triggered public health action, clearly demonstrating the utility of this technology. Wastewater surveillance will become increasingly important in the post-vaccination pandemic landscape as individuals with asymptomatic/mild infections continue transmitting SARS-CoV-2 but are unlikely to be tested.


CommonHealth ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 141-147
Author(s):  
Shannon McGinnis ◽  
Shane Mclouglin ◽  
Tiffany Buturla ◽  
Nishita D'Souza ◽  
José Logo ◽  
...  

As the spread of COVID-19 continues to significantly impact daily life in the United States and globally, there is a need for a clear understanding of disease prevalence in communities. Traditional methods that rely on counting individual cases often result in underreporting due to limited access to testing or healthcare. This issue is further exacerbated by the spread of COVID-19 by asymptomatic or presymptomatic individuals who may not seek testing. Historically, wastewater surveillance has been used to provide population-level data on the prevalence of infectious diseases in communities. Data collected through wastewater surveillance has been used to advise public health control measures, such as vaccination campaigns, and to detect local outbreaks before cases are reported to public health authorities. For this reason, researchers around the globe have been analyzing wastewater samples for SARS-CoV-2 to assist in our response to the existing COVID-19 pandemic. This commentary discusses the potential utility of wastewater-based surveillance to advise public health control strategies for COVID-19 and discusses how it may be used to strengthen local surveillance efforts in Philadelphia.


Author(s):  
Michael G. Becker ◽  
Tracy Taylor ◽  
Sandra Kiazyk ◽  
Dana R. Cabiles ◽  
Adrienne F.A. Meyers ◽  
...  

AbstractThe coronavirus disease 2019 (Covid-19) pandemic, caused by SARS-CoV-2, has resulted in a global testing supply shortage. In response, pooled testing has emerged as a promising strategy that can immediately increase testing capacity. Here, we provide support for the adoption of sample pooling with the point-of-care Cepheid Xpert® Xpress SARS-CoV-2 molecular assay. Corroborating previous findings, the Xpert® Xpress SARS-CoV-2 assay limit of detection was comparable to central laboratory reverse-transcription quantitative PCR tests with observed SARS-CoV-2 detection below 100 copies/mL. The Xpert® Xpress assay detected SARS-CoV-2 after samples with minimum viral loads of 461 copies/mL were diluted into six sample pools. Based on these data, we recommend the adoption of pooled testing with the Xpert® Xpress SARS-CoV-2 assay where warranted by population public health needs. The suggested number of samples per pool, or pooling depth, is unique for each point-of-care test site and should be determined by assessing positive test rates. To statistically determine appropriate pooling depth, we have calculated the pooling efficiency for numerous combinations of pool sizes and test rates. This information is included as a supplemental dataset that we encourage public health authorities to use as a guide to make recommendations that will maximize testing capacity and resource conservation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241959
Author(s):  
Michael G. Becker ◽  
Tracy Taylor ◽  
Sandra Kiazyk ◽  
Dana R. Cabiles ◽  
Adrienne F. A. Meyers ◽  
...  

The coronavirus disease 2019 (Covid-19) pandemic, caused by SARS-CoV-2, has resulted in a global testing supply shortage. In response, pooled testing has emerged as a promising strategy that can immediately increase testing capacity. In pooled sample testing, multiple samples are combined (or pooled) together and tested as a single unit. If the pool is positive, the individual samples can then be individually tested to identify the positive case(s). Here, we provide support for the adoption of sample pooling with the point-of-care Cepheid Xpert® Xpress SARS-CoV-2 molecular assay. Corroborating previous findings, the limit of detection of this assay was comparable to laboratory-developed reverse-transcription quantitative PCR SARS-CoV-2 tests, with observed detection below 100 copies/mL. The Xpert® Xpress assay detected SARS-CoV-2 after samples with minimum viral loads of 461 copies/mL were pooled in groups of six. Based on these data, we recommend the adoption of pooled testing with the Xpert® Xpress SARS-CoV-2 assay where warranted based on public health needs. The suggested number of samples per pool, or the pooling depth, is unique for each point-of-care testing site and can be determined by the positive test rates. To statistically determine appropriate pooling depth, we have calculated the pooling efficiency for numerous combinations of pool sizes and test rates. This information is included as a supplemental dataset that we encourage public health authorities to use as a guide to make recommendations that will maximize testing capacity and resource conservation.


2021 ◽  
pp. 109019812110144
Author(s):  
Soon Guan Tan ◽  
Aravind Sesagiri Raamkumar ◽  
Hwee Lin Wee

This study aims to describe Facebook users’ beliefs toward physical distancing measures implemented during the Coronavirus disease (COVID-19) pandemic using the key constructs of the health belief model. A combination of rule-based filtering and manual classification methods was used to classify user comments on COVID-19 Facebook posts of three public health authorities: Centers for Disease Control and Prevention of the United States, Public Health England, and Ministry of Health, Singapore. A total of 104,304 comments were analyzed for posts published between 1 January, 2020, and 31 March, 2020, along with COVID-19 cases and deaths count data from the three countries. Findings indicate that the perceived benefits of physical distancing measures ( n = 3,463; 3.3%) was three times higher than perceived barriers ( n = 1,062; 1.0%). Perceived susceptibility to COVID-19 ( n = 2,934; 2.8%) was higher compared with perceived severity ( n = 2,081; 2.0%). Although susceptibility aspects of physical distancing were discussed more often at the start of the year, mentions on the benefits of intervention emerged stronger toward the end of the analysis period, highlighting the shift in beliefs. The health belief model is useful for understanding Facebook users’ beliefs at a basic level, and it provides a scope for further improvement.


Author(s):  
Thomas Plümper ◽  
Eric Neumayer

AbstractBackgroundThe Robert-Koch-Institute reports that during the summer holiday period a foreign country is stated as the most likely place of infection for an average of 27 and a maximum of 49% of new SARS-CoV-2 infections in Germany.MethodsCross-sectional study on observational data. In Germany, summer school holidays are coordinated between states and spread out over 13 weeks. Employing a dynamic model with district fixed effects, we analyze the association between these holidays and weekly incidence rates across 401 German districts.ResultsWe find effects of the holiday period of around 45% of the average district incidence rates in Germany during their respective final week of holidays and the 2 weeks after holidays end. Western states tend to experience stronger effects than Eastern states. We also find statistically significant interaction effects of school holidays with per capita taxable income and the share of foreign residents in a district’s population.ConclusionsOur results suggest that changed behavior during the holiday season accelerated the pandemic and made it considerably more difficult for public health authorities to contain the spread of the virus by means of contact tracing. Germany’s public health authorities did not prepare adequately for this acceleration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liliana Cruz Spano ◽  
Caroline Gastaldi Guerrieri ◽  
Lays Paula Bondi Volpini ◽  
Ricardo Pinto Schuenck ◽  
Jaqueline Pegoretti Goulart ◽  
...  

Abstract Background This study describes the investigation of an outbreak of diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) at a daycare center in southeastern Brazil, involving fourteen children, six staff members, six family members, and one nurse. All bacterial and viral pathogens detected were genetically characterized. Results Two isolates of a strain of enterohemorrhagic Escherichia coli (EHEC) serotype O111:H8 were recovered, one implicated in a case of HUS and the other in a case of uncomplicated diarrhea. These isolates had a clonal relationship of 94% and carried the stx2a and eae virulence genes and the OI-122 pathogenicity island. The EHEC strain was determined to be a single-locus variant of sequence type (ST) 327. EHEC isolates were resistant to ofloxacin, doxycycline, tetracycline, ampicillin, and trimethoprim-sulfamethoxazole and intermediately resistant to levofloxacin and ciprofloxacin. Rotavirus was not detected in any samples, and norovirus was detected in 46.7% (14/30) of the stool samples, three of which were from asymptomatic staff members. The noroviruses were classified as the recombinant GII.4 Sydney [P16] by gene sequencing. Conclusion In this outbreak, it was possible to identify an uncommon stx2a + EHEC O111:H8 strain, and the most recent pandemic norovirus strain GII.4 Sydney [P16]. Our findings reinforce the need for surveillance and diagnosis of multiple enteric pathogens by public health authorities, especially during outbreaks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miguel A. Bedoya-Pérez ◽  
Michael P. Ward ◽  
Max Loomes ◽  
Iain S. McGregor ◽  
Mathew S. Crowther

AbstractShortly after the enactment of restrictions aimed at limiting the spread of COVID-19, various local government and public health authorities around the world reported an increased sighting of rats. Such reports have yet to be empirically validated. Here we combined data from multi-catch rodent stations (providing data on rodent captures), rodent bait stations (providing data on rodent activity) and residents’ complaints to explore the effects of a six week lockdown period on rodent populations within the City of Sydney, Australia. The sampling interval encompassed October 2019 to July 2020 with lockdown defined as the interval from April 1st to May 15th, 2020. Rodent captures and activity (visits to bait stations) were stable prior to lockdown. Captures showed a rapid increase and then decline during the lockdown, while rodent visits to bait stations declined throughout this period. There were no changes in the frequency of complaints during lockdown relative to before and after lockdown. There was a non-directional change in the geographical distribution of indices of rodent abundance suggesting that rodents redistributed in response to resource scarcity. We hypothesize that lockdown measures initially resulted in increased rodent captures due to sudden shortage of human-derived food resources. Rodent visits to bait stations might not show this pattern due to the nature of the binary data collected, namely the presence or absence of a visit. Relocation of bait stations driven by pest management goals may also have affected the detection of any directional spatial effect. We conclude that the onset of COVID-19 may have disrupted commensal rodent populations, with possible implications for the future management of these ubiquitous urban indicator species.


Author(s):  
Vladimir Reshetnikov ◽  
Oleg Mitrokhin ◽  
Elena Belova ◽  
Victor Mikhailovsky ◽  
Maria Mikerova ◽  
...  

The novel coronavirus (COVID-19) outbreak is a public health emergency of international concern, and as a response, public health authorities started enforcing preventive measures like self-isolation and social distancing. The enforcement of isolation has consequences that may affect the lifestyle-related behavior of the general population. Quarantine encompasses a range of strategies that can be used to detain, isolate, or conditionally release individuals or populations infected or exposed to contagious diseases and should be tailored to circumstances. Interestingly, medical students may represent an example of how the COVID-19 pandemic can form new habits and change lifestyle behaviors. We conducted a web-based survey to assess changes in lifestyle-related behavior of self-isolated medical students during the COVID-19 pandemic. Then we analyzed the sanitary-hygienic regulations of the Russian Federation to determine the requirements for healthy buildings. Results showed that during the pandemic, the enforcement of isolation affects medical students’ lifestyle-related behavior and accompanies an increase in non-communicable diseases (NCDs). Indoor environmental quality (IEQ) and healthy buildings are cutting-edge factors in preventing COVID-19 and NCDs. The Russian sanitary-hygienic regulations support improving this factor with suitable requirements for ventilation, sewage, waste management, and disinfection. Herein, assessing isolation is possible through the hygienic self-isolation index.


2020 ◽  
Author(s):  
Youvraj Sohni

Abstract Multiple SARS-CoV-2 emergency use authorization (EUA) tests are being used for clinical testing across various clinical testing laboratories for meeting the diagnostic challenges of the ongoing pandemic. However, cross-assay variations in performance characteristics need to be recognized. A better understanding is needed of the clinical implications of cross-assay variation in performance characteristics, particularly in the limit of detection (LOD) of the SARS-CoV-2 assays used for clinical testing. Herein, a snapshot of the diversity of SARS-CoV-2 EUA analytical assay systems including methodologies, assay designs, and technology platforms is presented. Factors affecting the variations in LOD are discussed. Potential measures that may standardize across the various assay systems are suggested. Development of international standards and reference materials for the establishment of performance characteristics may substantially alleviate potential clinical decision-making challenges. Finally, cross-assay variation in LODs among the diverse SARS-CoV-2 diagnostic assays impacts clinical decision-making with multiple assay systems in use and lack of standardization across platforms. International standards in parallel with continued cross-platform studies and collaborative efforts across pertinent healthcare entities will help mitigate some of the clinical decision-making challenges.


Sign in / Sign up

Export Citation Format

Share Document