scholarly journals Detecting orientation of Brain MR scans using deep learning

Author(s):  
Chinmay Singhal ◽  
Nihit Gupta ◽  
Anouk Stein ◽  
Quan Zhou ◽  
Leon Chen ◽  
...  

AbstractThere has been a steady escalation in the impact of Artificial Intelligence (AI) on Healthcare along with an increasing amount of progress being made in this field. While many entities are working on the development of significant deep learning models for the diagnosis of brain-related diseases, identifying precise images needed for model training and inference tasks is limited due to variation in DICOM fields which use free text to define things like series description, sequence and orientation [1]. Detecting the orientation of brain MR scans (Axial/Sagittal/Coronal) remains a challenge due to these variations caused by linguistic barriers, human errors and de-identification - essentially rendering the tags unreliable [2, 3, 4]. In this work, we propose a deep learning model that identifies the orientation of brain MR scans with near perfect accuracy.

2021 ◽  
Vol 11 (21) ◽  
pp. 10377
Author(s):  
Hyeonseong Choi ◽  
Jaehwan Lee

To achieve high accuracy when performing deep learning, it is necessary to use a large-scale training model. However, due to the limitations of GPU memory, it is difficult to train large-scale training models within a single GPU. NVIDIA introduced a technology called CUDA Unified Memory with CUDA 6 to overcome the limitations of GPU memory by virtually combining GPU memory and CPU memory. In addition, in CUDA 8, memory advise options are introduced to efficiently utilize CUDA Unified Memory. In this work, we propose a newly optimized scheme based on CUDA Unified Memory to efficiently use GPU memory by applying different memory advise to each data type according to access patterns in deep learning training. We apply CUDA Unified Memory technology to PyTorch to see the performance of large-scale learning models through the expanded GPU memory. We conduct comprehensive experiments on how to efficiently utilize Unified Memory by applying memory advises when performing deep learning. As a result, when the data used for deep learning are divided into three types and a memory advise is applied to the data according to the access pattern, the deep learning execution time is reduced by 9.4% compared to the default Unified Memory.


2021 ◽  
Vol 310 ◽  
pp. 04002
Author(s):  
Nguyen Thanh Doan

Nowaday, expanding the application of deep learning technology is attracting attention of many researchers in the field of remote sensing. This paper presents methodology of using deep convolutional neural network model to determine the position of shoreline on Sentinel 2 satellite image. The methodology also provides techniques to reduce model retraining while ensuring the accuracy of the results. Methodological evaluation and analysis were conducted in the Mekong Delta region. The results from the study showed that interpolating the input images and calibrating the result thresholds improve accuracy and allow the trained deep learning model to externally test different images. The paper also evaluates the impact of the training dataset on the quality of the results obtained. Suggestions are also given for the number of files in the training dataset, as well as the information used for model training to solve the shoreline detection problem.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Vitor Bento ◽  
Manoela Kohler ◽  
Pedro Diaz ◽  
Leonardo Mendoza ◽  
Marco Aurelio Pacheco

AbstractIn this work we propose a workflow to deal with overlaid images—images with superimposed text and company logos—, which is very common in underwater monitoring videos and surveillance camera footage. It is demonstrated that it is possible to use Explaining Artificial Intelligence to improve deep learning models performance for image classification tasks in general. A deep learning model trained to classify metal surface defect, which previously had a low performance, is then evaluated with Layer-wise relevance propagation—an Explaining Artificial Intelligence technique—to identify problems in a dataset that hinder the training of deep learning models in a wide range of applications. Thereafter, it is possible to remove this unwanted information from the dataset—using different approaches: from cutting part of the images to training a Generative Inpainting neural network model—and retrain the model with the new preprocessed images. This proposed methodology improved F1 score in 20% when compared to the original trained dataset, validating the proposed workflow.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 122 ◽  
Author(s):  
Giuseppe Futia ◽  
Antonio Vetrò

Deep learning models contributed to reaching unprecedented results in prediction and classification tasks of Artificial Intelligence (AI) systems. However, alongside this notable progress, they do not provide human-understandable insights on how a specific result was achieved. In contexts where the impact of AI on human life is relevant (e.g., recruitment tools, medical diagnoses, etc.), explainability is not only a desirable property, but it is -or, in some cases, it will be soon-a legal requirement. Most of the available approaches to implement eXplainable Artificial Intelligence (XAI) focus on technical solutions usable only by experts able to manipulate the recursive mathematical functions in deep learning algorithms. A complementary approach is represented by symbolic AI, where symbols are elements of a lingua franca between humans and deep learning. In this context, Knowledge Graphs (KGs) and their underlying semantic technologies are the modern implementation of symbolic AI—while being less flexible and robust to noise compared to deep learning models, KGs are natively developed to be explainable. In this paper, we review the main XAI approaches existing in the literature, underlying their strengths and limitations, and we propose neural-symbolic integration as a cornerstone to design an AI which is closer to non-insiders comprehension. Within such a general direction, we identify three specific challenges for future research—knowledge matching, cross-disciplinary explanations and interactive explanations.


2020 ◽  
Author(s):  
Hirofumi Obinata ◽  
Peiying Ruan ◽  
Hitoshi Mori ◽  
Wentao Zhu ◽  
Hisashi Sasaki ◽  
...  

Abstract This study investigated the utility of artificial intelligence in predicting disease progression. We analysed 194 patients with COVID-19 confirmed by reverse transcription polymerase chain reaction. Among them, 31 patients had oxygen therapy administered after admission. To assess the utility of artificial intelligence in the prediction of disease progression, we used three machine learning models employing clinical features (patient’s background, laboratory data, and symptoms), one deep learning model employing computed tomography (CT) images, and one multimodal deep learning model employing a combination of clinical features and CT images. We also evaluated the predictive values of these models and analysed the important features required to predict worsening in cases of COVID-19. The multimodal deep learning model had the highest accuracy. The CT image was an important feature of multimodal deep learning model. The area under the curve of all machine learning models employing clinical features and the deep learning model employing CT images exceeded 90%, and sensitivity of these models exceeded 95%. C-reactive protein and lactate dehydrogenase were important features of machine learning models. Our machine learning model, while slightly less accurate than the multimodal model, still provides a valuable medical triage tool for patients in the early stages of COVID-19.


2021 ◽  
Vol 25 (3) ◽  
pp. 555-570
Author(s):  
Chuantao Wang ◽  
Xuexin Yang ◽  
Linkai Ding

Sentiment classification aims to solve the problem of automatic judgment of sentiment polarity. In the sentiment classification task of text data, such as online reviews, traditional deep learning models are dedicated to algorithm optimization but ignore the characteristics of imbalanced distribution of the number of classified samples and the inclusion of weak tagging information such as ratings and tags. Based on the traditional deep learning model, the method of random oversampling and cost sensitivity is used to increase the contribution of a minority of samples to the model loss function and avoid the model biasing to the majority of samples. The model training is divided into two stages. In the first stage, a large amount of weak tagging data is used to train the model, therefore a model that captures the sentiment semantics of the data is obtained. After that, the model parameters trained in the first stage are used as the initial parameters of the second stage model training, and only a small amount of tagging data is used to continue training the model to reduce the impact of noise, thus reducing the use of manual tagging samples. The experimental results show that the method is considerably better than traditional deep learning models in the sentiment classification task of hotel review data.


2019 ◽  
Vol 9 (22) ◽  
pp. 4871 ◽  
Author(s):  
Quan Liu ◽  
Chen Feng ◽  
Zida Song ◽  
Joseph Louis ◽  
Jian Zhou

Earthmoving is an integral civil engineering operation of significance, and tracking its productivity requires the statistics of loads moved by dump trucks. Since current truck loads’ statistics methods are laborious, costly, and limited in application, this paper presents the framework of a novel, automated, non-contact field earthmoving quantity statistics (FEQS) for projects with large earthmoving demands that use uniform and uncovered trucks. The proposed FEQS framework utilizes field surveillance systems and adopts vision-based deep learning for full/empty-load truck classification as the core work. Since convolutional neural network (CNN) and its transfer learning (TL) forms are popular vision-based deep learning models and numerous in type, a comparison study is conducted to test the framework’s core work feasibility and evaluate the performance of different deep learning models in implementation. The comparison study involved 12 CNN or CNN-TL models in full/empty-load truck classification, and the results revealed that while several provided satisfactory performance, the VGG16-FineTune provided the optimal performance. This proved the core work feasibility of the proposed FEQS framework. Further discussion provides model choice suggestions that CNN-TL models are more feasible than CNN prototypes, and models that adopt different TL methods have advantages in either working accuracy or speed for different tasks.


Author(s):  
Hsu-Heng Yen ◽  
Ping-Yu Wu ◽  
Pei-Yuan Su ◽  
Chia-Wei Yang ◽  
Yang-Yuan Chen ◽  
...  

Abstract Purpose Management of peptic ulcer bleeding is clinically challenging. Accurate characterization of the bleeding during endoscopy is key for endoscopic therapy. This study aimed to assess whether a deep learning model can aid in the classification of bleeding peptic ulcer disease. Methods Endoscopic still images of patients (n = 1694) with peptic ulcer bleeding for the last 5 years were retrieved and reviewed. Overall, 2289 images were collected for deep learning model training, and 449 images were validated for the performance test. Two expert endoscopists classified the images into different classes based on their appearance. Four deep learning models, including Mobile Net V2, VGG16, Inception V4, and ResNet50, were proposed and pre-trained by ImageNet with the established convolutional neural network algorithm. A comparison of the endoscopists and trained deep learning model was performed to evaluate the model’s performance on a dataset of 449 testing images. Results The results first presented the performance comparisons of four deep learning models. The Mobile Net V2 presented the optimal performance of the proposal models. The Mobile Net V2 was chosen for further comparing the performance with the diagnostic results obtained by one senior and one novice endoscopists. The sensitivity and specificity were acceptable for the prediction of “normal” lesions in both 3-class and 4-class classifications. For the 3-class category, the sensitivity and specificity were 94.83% and 92.36%, respectively. For the 4-class category, the sensitivity and specificity were 95.40% and 92.70%, respectively. The interobserver agreement of the testing dataset of the model was moderate to substantial with the senior endoscopist. The accuracy of the determination of endoscopic therapy required and high-risk endoscopic therapy of the deep learning model was higher than that of the novice endoscopist. Conclusions In this study, the deep learning model performed better than inexperienced endoscopists. Further improvement of the model may aid in clinical decision-making during clinical practice, especially for trainee endoscopist.


2021 ◽  
pp. 175791392097933
Author(s):  
SW Flint ◽  
A Piotrkowicz ◽  
K Watts

Aims: The outbreak of severe acute respiratory syndrome coronavirus 2 (COVID-19) is a global pandemic that has had substantial impact across societies. An attempt to reduce infection and spread of the disease, for most nations, has led to a lockdown period, where people’s movement has been restricted resulting in a consequential impact on employment, lifestyle behaviours and wellbeing. As such, this study aimed to explore adults’ thoughts and behaviours in response to the outbreak and resulting lockdown measures. Methods: Using an online survey, 1126 adults responded to invitations to participate in the study. Participants, all aged 18 years or older, were recruited using social media, email distribution lists, website advertisement and word of mouth. Sentiment and personality features extracted from free-text responses using Artificial Intelligence methods were used to cluster participants. Results: Findings demonstrated that there was varied knowledge of the symptoms of COVID-19 and high concern about infection, severe illness and death, spread to others, the impact on the health service and on the economy. Higher concerns about infection, illness and death were reported by people identified at high risk of severe illness from COVID-19. Behavioural clusters, identified using Artificial Intelligence methods, differed significantly in sentiment and personality traits, as well as concerns about COVID-19, actions, lifestyle behaviours and wellbeing during the COVID-19 lockdown. Conclusions: This time-sensitive study provides important insights into adults’ perceptions and behaviours in response to the COVID-19 pandemic and associated lockdown. The use of Artificial Intelligence has identified that there are two behavioural clusters that can predict people’s responses during the COVID-19 pandemic, which goes beyond simple demographic groupings. Considering these insights may improve the effectiveness of communication, actions to reduce the direct and indirect impact of the COVID-19 pandemic and to support community recovery.


Sign in / Sign up

Export Citation Format

Share Document