scholarly journals CRISPRi screens in human astrocytes elucidate regulators of distinct inflammatory reactive states

Author(s):  
Kun Leng ◽  
Brendan Rooney ◽  
Hyosung Kim ◽  
Wenlong Xia ◽  
Mark Koontz ◽  
...  

ABSTRACTIn response to central nervous system injury or disease, astrocytes become reactive, adopting context-dependent states with altered functions. Certain inflammatory insults induce reactive astrocyte states that lose homeostatic functions and gain harmful outputs, and likely contribute to neuroinflammatory and neurodegenerative diseases. However, the cellular pathways controlling these states are not fully understood. Here, we combined single-cell transcriptomics with CRISPRi screening in human iPSC-derived astrocytes to systematically interrogate inflammatory reactivity. We found that autocrine-paracrine IL-6 and interferon signaling downstream of canonical NF-κB activation drove two distinct inflammatory reactive states promoted by and inhibited by STAT3, respectively. Furthermore, these states corresponded with those observed in other experimental contexts, including in vivo, and their markers were upregulated in the human brain in Alzheimer’s disease and hypoxic ischemic encephalopathy. These results and the platform we established have the potential to guide the development of therapeutics to selectively modulate different aspects of inflammatory astrocyte reactivity.

2021 ◽  
Author(s):  
Aine Fairbrother-Browne ◽  
Aminah T. Ali ◽  
Regina H. Reynolds ◽  
Sonia Garcia-Ruiz ◽  
David Zhang ◽  
...  

AbstractMitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases as mitochondria are essential to neuronal function. The mitochondrial genome encodes a small number of core respiratory chain proteins, whereas the vast majority of mitochondrial proteins are encoded by the nuclear genome. Here we focus on establishing a profile of nuclear-mitochondrial transcriptional relationships in healthy human central nervous system tissue data, before examining perturbations of these processes in Alzheimer&#8217s disease using transcriptomic data originating from affected human brain tissue. Through cross-central nervous system analysis of mitochondrial-nuclear gene pair relationships, we find that the cell type composition underlies regional variation, and variation is driven at the subcellular level by heterogeneity of nuclear-mitochondrial coordination in post-synaptic regions. We show that nuclear genes causally implicated in sporadic Parkinson&#8217s disease and Alzheimer&#8217s disease show much stronger relationships with the mitochondrial genome than expected by chance, and that nuclear-mitochondrial relationships are significantly perturbed in Alzheimer&#8217s disease cases, particularly amongst genes involved in synaptic and lysosomal pathways. Finally, we present MitoNuclearCOEXPlorer, a web tool designed to allow users to interrogate and visualise key mitochondrial-nuclear relationships in multi-dimensional brain data. We conclude that mitochondrial-nuclear relationships differ significantly across regions of the healthy brain, which appears to be driven by the functional specialisation of different cell types. We also find that mitochondrial-nuclear co-expression in critical pathways is disrupted in Alzheimer&#8217s disease, potentially implicating the regulation of energy balance and removal of dysfunctional mitochondria in the etiology or progression of the disease and making the case for the relevance of bi-genomic co-ordination in the pathogenesis of neurodegenerative diseases.


2018 ◽  
Vol 2 ◽  
pp. 239821281881807 ◽  
Author(s):  
Kirsty Goncalves ◽  
Stefan Przyborski

The use of stem cells in biomedical research is an extremely active area of science. This is because they provide tools that can be used both in vivo and vitro to either replace cells lost in degenerative processes, or to model such diseases to elucidate their underlying mechanisms. This review aims to discuss the use of stem cells in terms of providing regeneration within the nervous system, which is particularly important as neurons of the central nervous system lack the ability to inherently regenerate and repair lost connections. As populations are ageing, incidence of neurodegenerative diseases are increasing, highlighting the need to better understand the regenerative capacity and many uses of stem cells in this field.


2018 ◽  
Vol 16 (S1) ◽  
pp. S55-S64
Author(s):  
G. Hajjaj ◽  
A. Bahlouli ◽  
M. Tajani ◽  
K. Alaoui ◽  
Y. Cherrah ◽  
...  

Ormenis mixta L. is traditionally used for central nervous system (CNS)-related diseases. Its anti-stress properties have received attention in Moroccan traditional medicine and aromatherapy. However, no pharmacological studies have yet been undertaken on this plant in Morocco. The present study provides a preliminary phytochemical screening and psychopharmacological profile of the essential oil and aqueous extract from Ormenis mixta L. by using behavioral tests in vivo, at graded doses. The result of this research shows that Ormenis mixta L. was safe up to 2 g/kg b.w. (body weight) in the acute toxicity study, possesses potential psychostimulant effect, and has antianxiety and antidepressant-like activity. This activity profile of Ormenis mixta L. was similar to the typical psychostimulant, caffeine. The exact mechanism of action underlying this stimulant-like effect should be clarified with further detailed studies. These results explained the extensive use of Ormenis mixta L. as a traditional medicine in Morocco.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 846
Author(s):  
Gitishree Das ◽  
Han-Seung Shin ◽  
Rosa Tundis ◽  
Sandra Gonçalves ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies.


1982 ◽  
Vol 60 (11) ◽  
pp. 1415-1424 ◽  
Author(s):  
H. B. Demopoulos ◽  
E. S. Flamm ◽  
M. L. Seligman ◽  
D. D. Pietronigro ◽  
J. Tomasula ◽  
...  

The hypothesis that pathologic free-radical reactions are initiated and catalyzed in the major central nervous system (CNS) disorders has been further supported by the current acute spinal cord injury work that has demonstrated the appearance of specific, cholesterol free-radical oxidation products. The significance of these products is suggested by the fact that: (i) they increase with time after injury; (ii) their production is curtailed with a steroidal antioxidant; (iii) high antioxidant doses of the steroidal antioxidant which curtail the development of free-radical product prevent tissue degeneration and permit functional restoration. The role of pathologic free-radical reactions is also inferred from the loss of ascorbic acid, a principal CNS antioxidant, and of extractable cholesterol. These losses are also prevented by the steroidal antioxidant. This model system is among others in the CNS which offer distinctive opportunities to study, in vivo, the onset and progression of membrane damaging free-radical reactions within well-defined parameters of time, extent of tissue injury, correlation with changes in membrane enzymes, and correlation with readily measurable in vivo functions.


1946 ◽  
Vol 84 (4) ◽  
pp. 277-292 ◽  
Author(s):  
S. Edward Sulkin ◽  
Christine Zarafonetis ◽  
Andres Goth

Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell.


1978 ◽  
Vol 56 (3) ◽  
pp. 535-538 ◽  
Author(s):  
S. W. Tang ◽  
H. C. Stancer ◽  
J. J. Warsh

A new strategy for measurement of brain catecholamines was tested in an animal model. [3H]Norepinephrine was infused intravenously in rabbits to label the peripheral norepinephrine pools. The specific activity of urinary 3-methoxy-4-hydroxymandelic acid was consistently higher than that for 3-methoxy-4-hydroxyphenylglycol (MHPG). Central sympathectomy with 6-hydroxydopamine abolished this difference. Using the formula we propose, it is estimated that 30–50% of urinary MHPG originates from the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document