scholarly journals Human brain mitochondrial-nuclear cross-talk is cell-type specific and is perturbed by neurodegeneration

2021 ◽  
Author(s):  
Aine Fairbrother-Browne ◽  
Aminah T. Ali ◽  
Regina H. Reynolds ◽  
Sonia Garcia-Ruiz ◽  
David Zhang ◽  
...  

AbstractMitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases as mitochondria are essential to neuronal function. The mitochondrial genome encodes a small number of core respiratory chain proteins, whereas the vast majority of mitochondrial proteins are encoded by the nuclear genome. Here we focus on establishing a profile of nuclear-mitochondrial transcriptional relationships in healthy human central nervous system tissue data, before examining perturbations of these processes in Alzheimer&#8217s disease using transcriptomic data originating from affected human brain tissue. Through cross-central nervous system analysis of mitochondrial-nuclear gene pair relationships, we find that the cell type composition underlies regional variation, and variation is driven at the subcellular level by heterogeneity of nuclear-mitochondrial coordination in post-synaptic regions. We show that nuclear genes causally implicated in sporadic Parkinson&#8217s disease and Alzheimer&#8217s disease show much stronger relationships with the mitochondrial genome than expected by chance, and that nuclear-mitochondrial relationships are significantly perturbed in Alzheimer&#8217s disease cases, particularly amongst genes involved in synaptic and lysosomal pathways. Finally, we present MitoNuclearCOEXPlorer, a web tool designed to allow users to interrogate and visualise key mitochondrial-nuclear relationships in multi-dimensional brain data. We conclude that mitochondrial-nuclear relationships differ significantly across regions of the healthy brain, which appears to be driven by the functional specialisation of different cell types. We also find that mitochondrial-nuclear co-expression in critical pathways is disrupted in Alzheimer&#8217s disease, potentially implicating the regulation of energy balance and removal of dysfunctional mitochondria in the etiology or progression of the disease and making the case for the relevance of bi-genomic co-ordination in the pathogenesis of neurodegenerative diseases.

Author(s):  
Kun Leng ◽  
Brendan Rooney ◽  
Hyosung Kim ◽  
Wenlong Xia ◽  
Mark Koontz ◽  
...  

ABSTRACTIn response to central nervous system injury or disease, astrocytes become reactive, adopting context-dependent states with altered functions. Certain inflammatory insults induce reactive astrocyte states that lose homeostatic functions and gain harmful outputs, and likely contribute to neuroinflammatory and neurodegenerative diseases. However, the cellular pathways controlling these states are not fully understood. Here, we combined single-cell transcriptomics with CRISPRi screening in human iPSC-derived astrocytes to systematically interrogate inflammatory reactivity. We found that autocrine-paracrine IL-6 and interferon signaling downstream of canonical NF-κB activation drove two distinct inflammatory reactive states promoted by and inhibited by STAT3, respectively. Furthermore, these states corresponded with those observed in other experimental contexts, including in vivo, and their markers were upregulated in the human brain in Alzheimer’s disease and hypoxic ischemic encephalopathy. These results and the platform we established have the potential to guide the development of therapeutics to selectively modulate different aspects of inflammatory astrocyte reactivity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aine Fairbrother-Browne ◽  
Aminah T. Ali ◽  
Regina H. Reynolds ◽  
Sonia Garcia-Ruiz ◽  
David Zhang ◽  
...  

AbstractMitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases. The mitochondrial genome encodes core respiratory chain proteins, but the vast majority of mitochondrial proteins are nuclear-encoded, making interactions between the two genomes vital for cell function. Here, we examine these relationships by comparing mitochondrial and nuclear gene expression across different regions of the human brain in healthy and disease cohorts. We find strong regional patterns that are modulated by cell-type and reflect functional specialisation. Nuclear genes causally implicated in sporadic Parkinson’s and Alzheimer’s disease (AD) show much stronger relationships with the mitochondrial genome than expected by chance, and mitochondrial-nuclear relationships are highly perturbed in AD cases, particularly through synaptic and lysosomal pathways, potentially implicating the regulation of energy balance and removal of dysfunction mitochondria in the etiology or progression of the disease. Finally, we present MitoNuclearCOEXPlorer, a tool to interrogate key mitochondria-nuclear relationships in multi-dimensional brain data.


2021 ◽  
Vol 16 ◽  
pp. 263310552110187
Author(s):  
Christopher D Link

Numerous studies have identified microbial sequences or epitopes in pathological and non-pathological human brain samples. It has not been resolved if these observations are artifactual, or truly represent population of the brain by microbes. Given the tempting speculation that resident microbes could play a role in the many neuropsychiatric and neurodegenerative diseases that currently lack clear etiologies, there is a strong motivation to determine the “ground truth” of microbial existence in living brains. Here I argue that the evidence for the presence of microbes in diseased brains is quite strong, but a compelling demonstration of resident microbes in the healthy human brain remains to be done. Dedicated animal models studies may be required to determine if there is indeed a “brain microbiome.”


2021 ◽  
Vol 22 (4) ◽  
pp. 1587
Author(s):  
Nuri Song ◽  
Da Yeon Jeong ◽  
Thai Hien Tu ◽  
Byong Seo Park ◽  
Hye Rim Yang ◽  
...  

Adiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons. However, the ability of adiponectin to control nutrient metabolism in astrocytes has not yet been fully elucidated. In this study, we investigated the effects of adiponectin on multiple metabolic processes in hypothalamic astrocytes. Adiponectin enhanced glucose uptake, glycolytic processes and fatty acid oxidation in cultured primary hypothalamic astrocytes. In line with these findings, we also found that adiponectin treatment effectively enhanced synthesis and release of monocarboxylates. Overall, these data suggested that adiponectin triggers catabolic processes in astrocytes, thereby enhancing nutrient availability in the hypothalamus.


2021 ◽  
Author(s):  
Patrick A. Lewis

Abstract Cellular control of vesicle biology and trafficking is critical for cell viability, with disruption of these pathways within the cells of the central nervous system resulting in neurodegeneration and disease. The past two decades have provided important insights into both the genetic and biological links between vesicle trafficking and neurodegeneration. In this essay, the pathways that have emerged as being critical for neuronal survival in the human brain will be discussed – illustrating the diversity of proteins and cellular events with three molecular case studies drawn from different neurological diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


2020 ◽  
Vol 117 (17) ◽  
pp. 9466-9476 ◽  
Author(s):  
Jolien Wolbert ◽  
Xiaolin Li ◽  
Michael Heming ◽  
Anne K. Mausberg ◽  
Dagmar Akkermann ◽  
...  

Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell–cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.


Sign in / Sign up

Export Citation Format

Share Document