scholarly journals Toxoplasma-proximal and distal control by GBPs in human macrophages

2021 ◽  
Author(s):  
Daniel Fisch ◽  
Barbara Clough ◽  
Rabia Khan ◽  
Lyn Healy ◽  
Eva-Maria Frickel

Human guanylate-binding proteins (GBPs) are key players of interferon-gamma (IFNγ)-induced cell intrinsic defense mechanisms targeting intracellular pathogens. In this study we combine the well-established Toxoplasma gondii infection model with three in vitro macrophage culture systems to delineate the contribution of individual GBP family members to control this apicomplexan parasite. Use of high-throughput imaging assays and genome engineering allowed us to define a role for GBP1, 2 and 5 in parasite infection control. While GBP1 performs a pathogen-proximal, parasiticidal and growth-restricting function through accumulation at the parasitophorous vacuole of intracellular Toxoplasma, GBP2 and 5 perform a pathogen-distal, growth-restricting role. We further find that mutants of the GTPase or isoprenylation site of GBP1/2/5 affect their normal function in Toxoplasma control by leading to mis-localization of the proteins.

2010 ◽  
Vol 79 (3) ◽  
pp. 1319-1328 ◽  
Author(s):  
Feng Zheng ◽  
Hongfeng Ji ◽  
Min Cao ◽  
Changjun Wang ◽  
Youjun Feng ◽  
...  

ABSTRACTThe Rgg-like regulators, a family of transcription factors commonly found in many Gram-positive bacteria, play multiple roles, especially in the control of pathogen virulence. Here, we report anrgghomologue from a Chinese isolate, 05ZYH33, ofStreptococcus suisserotype 2 (SS2). Deletion of thergggene in SS2 increased its adhesion to Hep-2 cells and hemolytic activityin vitro. Significantly, inactivation of thergggene attenuated SS2 virulence in an experimental piglet infection model. Using DNA microarrays and quantitative reverse transcription-PCR, we found that the Rgg regulator affects the transcriptional profile of 15.87% (n= 345) of all of the annotated chromosomal genes, including those involved in nonglucose carbohydrate metabolism, DNA recombination, protein biosynthesis, bacterial defense mechanisms, and others. It was experimentally verified that the deletion ofrggin SS2 reduced the utilization of nonglucose carbohydrates, such as lactose and maltose. In addition, thergggene was found to be associated with changes in the bacterial microscopic phenotype and growth curve. These data suggested that Rgg in SS2 is a global transcriptional regulator that plays an important role in promoting SS2 bacterial survival during pathogen-host interaction.


2001 ◽  
Vol 36 (2) ◽  
pp. 319-330 ◽  
Author(s):  
Mark Servos ◽  
Don Bennie ◽  
Kent Burnison ◽  
Philippa Cureton ◽  
Nicol Davidson ◽  
...  

Abstract A number of biological responses and multigenerational effects, mediated through the disruption of endocrine systems, have been observed in biota exposed to relatively low concentrations of environmental contaminants. These types of responses need to be considered within a weight of evidence approach in our risk assessment and risk management frameworks. However, including endocrine responses in an environmental risk assessment introduces a number of uncertainties that must be considered. A risk assessment of nonylphenol and nonylphenol polyethoxylates (NP/NPE) is used as a case study to demonstrate the sources and magnitude of some of the uncertainties associated with using endocrine disruption as an assessment endpoint. Even with this relatively well studied group of substances, there are substantial knowledge gaps which contribute to the overall uncertainties, limiting the interpretation within the risk assessment. The uncertainty of extrapolating from in vitro or biochemical responses to higher levels of organization or across species is not well understood. The endocrine system is very complex and chemicals can interact or interfere with the normal function of endocrine systems in a number of ways (e.g., receptors, hormones) which may or may not result in an adverse responses in the whole organism. Using endocrine responses can lead to different conclusions than traditional endpoints due to a variety of factors, such as differences in relative potencies of chemicals for specific endpoints (e.g., receptor binding versus chronic toxicity). The uncertainties can also be considerably larger and the desirability of using endocrine endpoints should be carefully evaluated. Endocrine disruption is a mode of action and not a functional endpoint and this needs to be considered carefully in the problem formulation stage and the interpretation of the weight of evidence.


Author(s):  
Nidhi Sharma ◽  
Arti Singh ◽  
Ruchika Sharma ◽  
Anoop Kumar

Aim: The aim of the study was to find out the role of auranofin as a promising broad spectrum antibacterial agent. Methods: In-vitro assays (Percentage growth retardation, Bacterial growth kinetics, Biofilm formation assay) and In-silico study (Molegro virtual docker (MVD) version 6.0 and Molecular operating environment (MOE) version 2008.10 software). Results: The in vitro assays have shown that auranofin has good antibacterial activity against Gram positive and Gram negative bacterial strains. Further, auranofin has shown synergistic activity in combination with ampicillin against S. aureus and B. subtilis whereas in combination with neomycin has just shown additive effect against E. coli, P. aeruginosa and B. pumilus. In vivo results have revealed that auranofin alone and in combination with standard drugs significantly decreased the bioburden in zebrafish infection model as compared to control. The molecular docking study have shown good interaction of auranofin with penicillin binding protein (2Y2M), topoisomerase (3TTZ), UDP-3-O-[3- hydroxymyristoyl] N-acetylglucosaminedeacetylase (3UHM), cell adhesion protein (4QRK), β-lactamase (5CTN) and arylsulphatase (1HDH) enzyme as that of reference ligand which indicate multimodal mechanism of action of auranofin. Finally, MTT assay has shown non-cytotoxic effect of auranofin. Conclusion: In conclusion, auranofin in combination with existing antibiotics could be developed as a broad spectrum antibacterial agent; however, further studies are required to confirm its safety and efficacy. This study provides possibility of use of auranofin apart from its established therapeutic indication in combination with existing antibiotics to tackle the problem of resistance.


2020 ◽  
Vol 21 (5) ◽  
pp. 497-506
Author(s):  
Mayck Silva Barbosa ◽  
Bruna da Silva Souza ◽  
Ana Clara Silva Sales ◽  
Jhoana D’arc Lopes de Sousa ◽  
Francisca Dayane Soares da Silva ◽  
...  

Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants’ defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.


2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


2021 ◽  
Vol 15 ◽  
Author(s):  
Muhammad Awais ◽  
Waqar Hussain ◽  
Nouman Rasool ◽  
Yaser Daanial Khan

Background: The uncontrolled growth due to accumulation of genetic and epigenetic changes as a result of loss or reduction in the normal function of Tumor Suppressor Genes (TSGs) and Pro-oncogenes is known as cancer. TSGs control cell division and growth by repairing of DNA mistakes during replication and restrict the unwanted proliferation of a cell or activities, those are the part of tumor production. Objectives: This study aims to propose a novel, accurate, user-friendly model to predict tumor suppressor proteins, which would be freely available to experimental molecular biologists to assist them using in vitro and in vivo studies. Methods: The predictor model has used the input feature vector (IFV) calculated from the physicochemical properties of proteins based on FCNN to compute the accuracy, sensitivity, specificity, and MCC. The proposed model was validated against different exhaustive validation techniques i.e. self-consistency and cross-validation. Results: Using self-consistency, the accuracy is 99%, for cross-validation and independent testing has 99.80% and 100% accuracy respectively. The overall accuracy of the proposed model is 99%, sensitivity value 98% and specificity 99% and F1-score was 0.99. Conclusion: It concludes, the proposed model for prediction of the tumor suppressor proteins can predict the tumor suppressor proteins efficiently, but it still has space for improvements in computational ways as the protein sequences may rapidly increase, day by day.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1202
Author(s):  
Bojjibabu Chidipi ◽  
Syed Islamuddin Shah ◽  
Michelle Reiser ◽  
Manasa Kanithi ◽  
Amanda Garces ◽  
...  

In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 439
Author(s):  
Christopher G. Bunick ◽  
Jonette Keri ◽  
S. Ken Tanaka ◽  
Nika Furey ◽  
Giovanni Damiani ◽  
...  

Prolonged broad-spectrum antibiotic use is more likely to induce bacterial resistance and dysbiosis of skin and gut microflora. First and second-generation tetracycline-class antibiotics have similar broad-spectrum antibacterial activity. Targeted tetracycline-class antibiotics are needed to limit antimicrobial resistance and improve patient outcomes. Sarecycline is a narrow-spectrum, third-generation tetracycline-class antibiotic Food and Drug Administration (FDA)-approved for treating moderate-to-severe acne. In vitro studies demonstrated activity against clinically relevant Gram-positive bacteria but reduced activity against Gram-negative bacteria. Recent studies have provided insight into how the structure of sarecycline, with a unique C7 moiety, interacts with bacterial ribosomes to block translation and prevent antibiotic resistance. Sarecycline reduces Staphylococcus aureus DNA and protein synthesis with limited effects on RNA, lipid, and bacterial wall synthesis. In agreement with in vitro data, sarecycline demonstrated narrower-spectrum in vivo activity in murine models of infection, exhibiting activity against S. aureus, but reduced efficacy against Escherichia coli compared to doxycycline and minocycline. In a murine neutropenic thigh wound infection model, sarecycline was as effective as doxycycline against S. aureus. The anti-inflammatory activity of sarecycline was comparable to doxycycline and minocycline in a rat paw edema model. Here, we review the antibacterial mechanisms of sarecycline and report results of in vivo studies of infection and inflammation.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


Sign in / Sign up

Export Citation Format

Share Document