scholarly journals Characterization of a novel Lbx1 mouse loss of function strain

2021 ◽  
Author(s):  
Lyvianne Decourtye ◽  
Jeremy A. McCallum-Loudeac ◽  
Sylvia Zellhuber-McMillan ◽  
Emma Young ◽  
Kathleen J. Sircombe ◽  
...  

AbstractAdolescent Idiopathic Scoliosis (AIS) is the most common type of spine deformity affecting 2-3% of the population worldwide. The etiology of this disease is still poorly understood. Several GWAS studies have identified single nucleotide polymorphisms (SNPs) located near the gene LBX1 that is significantly correlated with AIS risk. LBX1 is a transcription factor with roles in myocyte precursor migration, cardiac neural crest specification, and neuronal fate determination in the neural tube. Here, we further investigated the role of LBX1 in the developing spinal cord of mouse embryos using a CRISPR-generated mouse model expressing a truncated version of LBX1 (Lbx1Δ). Homozygous mice died at birth, likely due to cardiac abnormalities. To further study the neural tube phenotype, we used RNA-sequencing to identify 410 genes differentially expressed between the neural tubes of E12.5 wildtype and Lbx1Δ/Δ embryos. Genes with increased expression in the deletion line were involved in neurogenesis and those with broad roles in embryonic development. Many of these genes have also been associated with scoliotic phenotypes. In comparison, genes with decreased expression were primarily involved in skeletal development. Subsequent skeletal and immunohistochemistry analysis further confirmed these results. This study aids in understanding the significance of links between Lbx1 function and AIS susceptibility.

2017 ◽  
Vol 52 (8) ◽  
pp. 615-622 ◽  
Author(s):  
Lilian Cristina Gomes Cavalcanti ◽  
José Carlos Ferrugem Moraes ◽  
Danielle Assis de Faria ◽  
Concepta Margaret McManus ◽  
Alcebiades Renato Nepomuceno ◽  
...  

Abstract: The objective of this work was to identify single nucleotide polymorphisms (SNPs) in resequencing data from MC1R, ASIP, and TYRP1 genes derived from Crioula sheep (Ovis aris) with different coat colors. Polymorphisms in the ASIP (agouti-signaling protein), MC1R (melanocortin 1 receptor), and TRYP1 (tyrosinase-related protein 1) genes were analyzed in 115 sheep from Embrapa’s conservation nucleus of crioula sheep, in Brazil. A total of 7,914 bp were sequenced per animal, and 14 SNPs were identified. Two additional assays were performed to detect duplications and deletions in the ASIP gene. Ninety-five percent of the coat color variation was explained by epistatic interactions observed between specific alleles in the MC1R and ASIP genes. Evidence suggests an important role of TYRP1 variants for wool color, despite their low frequencies. The marker panel was efficient enough in predicting coat color in the studied animals and, therefore, can be used to implement a marker-assisted selection program in the conservation nucleus of sheep of the crioula breed.


2018 ◽  
Vol 9 (2) ◽  
pp. 140-144
Author(s):  
Michael J. Lyerly ◽  
Kelly Bartlett ◽  
Karen C. Albright

Purpose of reviewCYP2C19 is the primary enzyme involved in the activation of clopidogrel, an antiplatelet agent used for secondary stroke prevention. An individual's CYP2C19 alleles are used to understand their CYP2C19-clopidogrel metabolizer phenotype. Single nucleotide polymorphisms of the CYP2C19 gene result in altered metabolism of this prodrug.Recent findingsThree ischemic stroke cases were treated with clopidogrel. Despite confirming adequate drug exposure, medication adherence, and ruling out drug-drug interactions, all had recurrent ischemic stroke. Each case had a CYP2C19 *2/*17 genotype, categorizing them as intermediate clopidogrel metabolizers. Even with the gain-of-function allele, the loss-of-function allele resulted in lack of prodrug activation, leading to decreased efficacy in platelet inhibition.SummaryThese cases illustrate the importance of a thoughtful approach to secondary stroke prevention and demonstrate the utility of pharmacogenomic testing in clopidogrel hyporesponders. Recognition of the importance of CYP2C19 genotyping has the potential to enable better selection of appropriate secondary prevention strategies.


Author(s):  
Lyudmila P. Kuzmina ◽  
Anastasiya G. Khotuleva ◽  
Evgeniy V. Kovalevsky ◽  
Nikolay N. Anokhin ◽  
Iraklij M. Tskhomariya

Introduction. Various industries widely use chrysotile asbestos, which determines the relevance of research aimed at the prevention of asbestos-related diseases. It is promising to assess the role of specific genes, which products are potentially involved in the development and regulation of certain links in the pathogenesis of asbestosis, forming a genetic predisposition to the disease. The study aims to analyze the presence of associations of genetic polymorphism of cytokines and antioxidant enzymes with asbestosis development. Materials and methods. Groups were formed for examination among employees of OJSC "Uralasbest" with an established diagnosis of asbestosis and without lung diseases. For each person included in the study, dust exposure doses were calculated considering the percentage of time spent at the workplace during the shift for the entire work time. Genotyping of single nucleotide polymorphisms of cytokines IL1b (rs16944), IL4 (rs2243250), IL6 (rs1800795), TNFα (rs1800629) and antioxidant enzymes SOD2 (rs4880), GSTP1 (rs1610011), CAT (rs1001179) was carried out. Results. The authors revealed the associations of polymorphic variants A511G IL1b gene (OR=2.457, 95% CI=1.232-4.899) and C47T SOD2 gene (OR=1.705, 95% CI=1.055-2.756) with the development of asbestosis. There was an increase in the T allele IL4 gene (C589T) frequency in persons with asbestosis at lower values of dust exposure doses (OR=2.185, 95% CI=1.057-4.514). The study showed the associations of polymorphism C589T IL4 gene and C174G IL6 gene with more severe asbestosis, polymorphism A313G GSTP1 gene with pleural lesions in asbestosis. Conclusion. Polymorphic variants of the genes of cytokines and antioxidant enzymes, the protein products directly involved in the pathogenetic mechanisms of the formation of asbestosis, contribute to forming a genetic predisposition to the development and severe course of asbestosis. Using the identified genetic markers to identify risk groups for the development and intense period of asbestos-related pathology will optimize treatment and preventive measures, considering the organism's characteristics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guanghui An ◽  
Jiongjiong Chen

Abstract Background Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. Result In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3’region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3’H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3’region of the allele BjMYB113c. Conclusions Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


2010 ◽  
Vol 70 (4) ◽  
pp. 668-674 ◽  
Author(s):  
P Dieudé ◽  
M Guedj ◽  
J Wipff ◽  
B Ruiz ◽  
G Riemekasten ◽  
...  

BackgroundRecent evidence has highlighted a potential role of interleukin 1β (IL-1β) in systemic sclerosis (SSc). NLRP1 provides a scaffold for the assembly of the inflammasome that promotes the processing and maturation of pro-IL-1β. In addition, NLRP1 variants were found to confer susceptibility to autoimmune disorders.ObjectiveTo study a possible association of the NLRP1 rs6502867, rs2670660 and rs8182352, rs12150220 and rs4790797 with SSc in the European Caucasian population.MethodsNLRP1 single nucleotide polymorphisms were genotyped in 3227 individuals comprising a discovery set (870 SSc patients and 962 controls) and a replication set including individuals from Germany (532 SSc patients and 324 controls) and Italy (527 SSc patients and 301 controls), all individuals being of European Caucasian origin.ResultsConditional analyses revealed a significant association for the NLRP1 rs8182352 variant with both anti-topoisomerase-positive and SSc-related fibrosing alveolitis (FA) subsets under an additive model: p=0.0042, OR 1.23 (95% CI 1.07 to 1.41) and p=0.0065 OR 1.19 (95% CI 1.05 to 1.36), respectively. Logistic regression analysis showed an additive effect of IRF5 rs2004640, STAT4 rs7574865 and NLRP1 rs8182352 risk alleles on SSc-related FA.ConclusionsOur results establish NLRP1 as a new genetic susceptibility factor for SSc-related pulmonary fibrosis and anti-topoisomerase-positive SSc phenotypes. This provides new insights into the pathogenesis of SSc, underlining the potential role of innate immunity in particular in the FA-positive SSc subphenotype, which represents a severe subset of the disease.


2011 ◽  
Vol 96 (2) ◽  
pp. E394-E403 ◽  
Author(s):  
Neeraj K. Sharma ◽  
Kurt A. Langberg ◽  
Ashis K. Mondal ◽  
Steven C. Elbein ◽  
Swapan K. Das

abstract Context: Genome-wide association scans (GWAS) have identified novel single nucleotide polymorphisms (SNPs) that increase T2D susceptibility and indicated the role of nearby genes in T2D pathogenesis. Objective: We hypothesized that T2D-associated SNPs act as cis-regulators of nearby genes in human tissues and that expression of these transcripts may correlate with metabolic traits, including insulin sensitivity (SI). Design, Settings, and Patients: Association of SNPs with the expression of their nearest transcripts was tested in adipose and muscle from 168 healthy individuals who spanned a broad range of SI and body mass index (BMI) and in transformed lymphocytes (TLs). We tested correlations between the expression of these transcripts in adipose and muscle with metabolic traits. Utilizing allelic expression imbalance (AEI) analysis we examined the presence of other cis-regulators for those transcripts in TLs. Results: SNP rs9472138 was significantly (P = 0.037) associated with the expression of VEGFA in TLs while rs6698181 was detected as a cis-regulator for the PKN2 in muscle (P = 0.00027) and adipose (P = 0.018). Significant association was also observed for rs17036101 (P = 0.001) with expression of SYN2 in adipose of Caucasians. Among 19 GWAS-implicated transcripts, expression of VEGFA in adipose was correlated with BMI (r = −0.305) and SI (r = 0.230). Although only a minority of the T2D-associated SNPs were validated as cis-eQTLs for nearby transcripts, AEI analysis indicated presence of other cis-regulatory polymorphisms in 54% of these transcripts. Conclusions: Our study suggests that a small subset of GWAS-identified SNPs may increase T2D susceptibility by modulating expression of nearby transcripts in adipose or muscle.


2018 ◽  
Vol 14 (12) ◽  
pp. 20180642 ◽  
Author(s):  
Eiluned Pearce ◽  
Rafael Wlodarski ◽  
Anna Machin ◽  
Robin I. M. Dunbar

The ratio between the second and fourth digits (2D:4D) has been widely used as a proxy for fetal exposure to androgens and has been linked to a number of sociosexual traits in humans. However, the role of genes in this equation remains unknown. Here ( N = 474), we test, firstly, for associations between 2D:4D and single-nucleotide polymorphisms (SNPs) in nine neurochemical receptor genes ( AR, OXTR, AVPR1A, OPRM1, DRD1/2, ANKK1, 5HTR1A/2A ), and secondly, whether digit ratios mediate the relationship between genetic variation and sociosexuality. We demonstrate significant associations between AR , OPRM1 and AVPR1A and 2D:4D. Moreover, mediation analysis indicates that, in women, AR and OPRM1 variation drives digit ratios, which are related positively to impulsivity and, for OPRM1 , negatively to romantic relationship quality. Although these findings are subject to multiple testing issues, this study provides preliminary evidence that in women genetic factors may affect both impulsivity and perceived relationship quality through influencing factors indexed by digit ratios.


Sign in / Sign up

Export Citation Format

Share Document