scholarly journals Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools

2021 ◽  
Author(s):  
Christopher Markosian ◽  
Daniela I. Staquicini ◽  
Prashant Dogra ◽  
Esteban Dodero-Rojas ◽  
Fenny H. F. Tang ◽  
...  

AbstractTargeted bacteriophage (phage) particles are potentially attractive yet inexpensive platforms for immunization. Herein, we describe targeted phage capsid display of an immunogenically relevant epitope of the SARS-CoV-2 Spike protein that is empirically conserved, likely due to the high mutational cost among all variants identified to date. This observation may herald an approach to developing vaccine candidates for broad-spectrum, towards universal, protection against multiple emergent variants of coronavirus that cause COVID-19.

2021 ◽  
Vol 7 (22) ◽  
pp. eabg7156
Author(s):  
So-Hee Hong ◽  
Hanseul Oh ◽  
Yong Wook Park ◽  
Hye Won Kwak ◽  
Eun Young Oh ◽  
...  

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


2021 ◽  
Author(s):  
Qingyu Zhao ◽  
Yanan Gao ◽  
Min Xiao ◽  
Xuefei Huang ◽  
Xuanjun Wu

For prevention of the coronavirus disease 2019 caused by the novel coronavirus SARS-CoV-2, an effective vaccine is critical. Herein, several potential peptide epitopes from the spike protein of SARS-CoV-2 have...


2021 ◽  
Vol 15 ◽  
Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Coronavirus Disease 2019 (COVID-19) is caused by a new strain of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). It is the most challenging pandemic of this century. The growing COVID-19 pandemic has triggered extraordinary efforts to restrict the virus in numerous ways, owing to the emergence of SARS-CoV-2. Immunotherapy, which includes artificially stimulating the immune system to generate an immunological response, is regarded as an effective strategy for preventing and treating several infectious illnesses and malignancies. Given the pandemic's high fatality rate and quick expansion, an effective vaccination is urgently needed to keep it under control. The basic goal of all COVID-19 vaccine programs is to develop a vaccine that causes the generation of surface protein neutralizing antibodies in subjects. The epitope discovery for the SARS-CoV-2 vaccine candidates is likewise made using an immuno-informatics methodology. It can be used to find the epitopes in viral proteins important for cytotoxic T cells and B cells. A safe and effective COVID-19 vaccine that can elicit the necessary immune response is necessary to end the epidemic. The global search for a safe and effective COVID-19 vaccine is yielding results. More than a dozen vaccines have already been approved around the world, with many more in the clinical trials. Patents can cover the underlying technology used to generate a vaccine, whereas trade secrets can cover manufacturing methods and procedures.


2020 ◽  
Author(s):  
Rohit Pritam Das ◽  
Manaswini Jagadeb ◽  
Surya Narayan Rath

Novel corona virus disease 2019 (COVID-19) is emerging as a pandemic situation and declared as a global health emergency by WHO. Due to lack of specific medicine and vaccine, viral infection has gained a frightening rate and created a devastating state across the globe. Here authors have attempted to design epitope based potential peptide as a vaccine candidate using immunoinformatics approach. As of evidence from literatures, SARS-CoV-2 Spike protein is a key protein to initiate the viral infection within a host cell thus used here as a reasonable vaccine target. We have predicted a 9-mer peptide as representative of both B-cell and T-cell epitopic region along with suitable properties such as antigenic and non-allergenic. To its support, strong molecular interaction of the predicted peptide was also observed with MHC molecules and Toll Like receptors. The present study may helpful to step forward in the development of vaccine candidates against COVID-19.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e52773 ◽  
Author(s):  
Debmalya Barh ◽  
Neha Barve ◽  
Krishnakant Gupta ◽  
Sudha Chandra ◽  
Neha Jain ◽  
...  

Heliyon ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. e04865
Author(s):  
Arafat Islam Ashik ◽  
Mahedi Hasan ◽  
Atiya Tahira Tasnim ◽  
Md. Belal Chowdhury ◽  
Tanvir Hossain ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Atin Khalaj-Hedayati

The recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines against human coronavirus infections since the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003, there is no available licensed vaccine yet. A better understanding of previous coronavirus vaccine studies may help to design a vaccine for the newly emerged virus, SARS-CoV-2, that may also cover other pathogenic coronaviruses as a potentially universal vaccine. In general, coronavirus spike protein is the major antigen for the vaccine design as it can induce neutralizing antibodies and protective immunity. By considering the high genetic similarity between SARS-CoV and SARS-CoV-2, here, protective immunity against SARS-CoV spike subunit vaccine candidates in animal models has been reviewed to gain advances that can facilitate coronavirus vaccine development in the near future.


Vaccine ◽  
2017 ◽  
Vol 35 (31) ◽  
pp. 3813-3816 ◽  
Author(s):  
Xiaohong Liu ◽  
Jiamin Sun ◽  
Haizhen Wu

BIOspektrum ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 46-48
Author(s):  
Stefan Dübel ◽  
Andreas Herrmann ◽  
Thomas Schirrmann ◽  
André Frenzel ◽  
Michael Hust

AbstractCOR-101 is a fully human, Fc silenced IgG that was discovered by antibody phage display. It reduced the SARS-CoV-2 virus load in the lung by more than 99 percent in Hamster models and led to much faster recovery. Its mode of action has been elucidated by solving the atomic structure of its interaction with SARS-CoV-2. The antibody competes with ACE2 binding by blocking a large area of the SARS-CoV-2 spike protein.


Sign in / Sign up

Export Citation Format

Share Document