scholarly journals Overcoming Tumor Heterogeneity by Ex Vivo Arming of T Cells Using Multiple Bispecific Antibodies

2021 ◽  
Author(s):  
Nai-Kong Cheung ◽  
Jeong A Park

Purpose: Tumoral heterogeneity is a hallmark of tumor evolution and cancer progression, being a longstanding challenge to targeted immunotherapy. Ex vivo armed T cells (EATs) using IgG-[L]-scFv bispecific antibodies (BsAbs) are potent tumor-specific cytotoxic effectors. To improve the anti-tumor efficacy of EATs against heterogeneous solid tumors, we explored multi-antigen targeting approaches. Methods: Ex vivo expanded T cells were armed with BsAbs built on the IgG-[L]-scFv platform, where an anti-CD3 (huOKT3) scFv was attached to the carboxyl end of both light chains of a tumor specific IgG. Multispecificity was created by combining monospecific EATs, combining BsAbs on the same T cell, or combining specificities on the same antibody. Three multi-antigens targeting EAT strategies were tested: (1) pooled EATs (simultaneous combination of monospecific EATs or alternate EATs (alternating combination of monospecific EATs), (2) dual-EATs or multi-EATs (T cells simultaneously armed with ≥ 2 BsAbs), and (3) TriAb-EATs [T cells armed with BsAb specific for two tumor targets besides CD3 (TriAb)]. The properties and efficiencies of these 3 strategies were evaluated by flow cytometry, in vitro cytotoxicity, cytokine release assays, and in vivo studies performed in BALB-Rag2-/-IL-2R-γc-KO (BRG) mice xenografted with cancer cell line (CDX) or patient-derived tumor (PDX). Results: Multi-EATs retained target antigen specificity and anti-tumor potency. Cytokine release with multi-EATs in the presence of tumor cells was substantially less than when multiple BsAbs were mixed with unarmed T cells. When tested against CDXs or PDXs, dual- or multi-EATs effectively suppressed tumor growth without clinical toxicities. Most importantly, dual- or multi-EATs were highly efficient in preventing clonal escape while mono- or TriAb- EATs were not as efficient. Conclusion: Arming T cells with multiple BsAbs enabled multi-specific T cell immunotherapy which overcomes tumor heterogeneity without excessive cytokine release.

2021 ◽  
Vol 9 (5) ◽  
pp. e002222
Author(s):  
Jeong A Park ◽  
Brian H Santich ◽  
Hong Xu ◽  
Lawrence G Lum ◽  
Nai-Kong V Cheung

BackgroundT cell-based immunotherapies using chimeric antigen receptors (CAR) or bispecific antibodies (BsAb) have produced impressive responses in hematological malignancies. However, major hurdles remained, including cytokine release syndrome, neurotoxicity, on-target off-tumor effects, reliance on autologous T cells, and failure in most solid tumors. BsAb armed T cells offer a safe alternative.MethodsWe generated ex vivo armed T cells (EATs) using IgG-[L]-scFv-platformed BsAb, where the anti-CD3 (huOKT3) scFv was attached to the light chain of a tumor-binding IgG. BsAb density on EAT, in vitro cytotoxicity, cytokine release, in vivo trafficking into tumors, and their antitumor activities were evaluated in multiple cancer cell lines and patient-derived xenograft mouse models. The efficacy of EATs after cryopreservation was studied, and gamma delta (γδ) T cells were investigated as unrelated alternative effector T cells.ResultsThe antitumor potency of BsAb armed T cells was substantially improved using the IgG-[L]-scFv BsAb platform. When compared with separate BsAb and T cell injection, EATs released less TNF-α, and infiltrated tumors faster, while achieving robust antitumor responses. The in vivo potency of EAT therapy depended on BsAb dose for arming, EAT cell number per injection, total number of EAT doses, and treatment schedule intensity. The antitumor efficacy of EATs was preserved following cryopreservation, and EATs using γδ T cells were safe and as effective as αβ T cell-EATs.ConclusionsEATs exerted potent antitumor activities against a broad spectrum of human cancer targets with remarkable safety. The antitumor potency of EATs depended on BsAb dose, cell number and total dose, and schedule. EATs were equally effective after cryopreservation, and the feasibility of third-party γδ-EATs offered an alternative for autologous T cell sources.


2021 ◽  
Vol 13 (584) ◽  
pp. eabd3595 ◽  
Author(s):  
Suman Paul ◽  
Alexander H. Pearlman ◽  
Jacqueline Douglass ◽  
Brian J. Mog ◽  
Emily Han-Chung Hsiue ◽  
...  

Immunotherapies such as chimeric antigen receptor (CAR) T cells and bispecific antibodies redirect healthy T cells to kill cancer cells expressing the target antigen. The pan-B cell antigen–targeting immunotherapies have been remarkably successful in treating B cell malignancies. Such therapies also result in the near-complete loss of healthy B cells, but this depletion is well tolerated by patients. Although analogous targeting of pan-T cell markers could, in theory, help control T cell cancers, the concomitant healthy T cell depletion would result in severe and unacceptable immunosuppression. Thus, therapies directed against T cell cancers require more selective targeting. Here, we describe an approach to target T cell cancers through T cell receptor (TCR) antigens. Each T cell, normal or malignant, expresses a unique TCR β chain generated from 1 of 30 TCR β chain variable gene families (TRBV1 to TRBV30). We hypothesized that bispecific antibodies targeting a single TRBV family member expressed in malignant T cells could promote killing of these cancer cells, while preserving healthy T cells that express any of the other 29 possible TRBV family members. We addressed this hypothesis by demonstrating that bispecific antibodies targeting TRBV5-5 (α-V5) or TRBV12 (α-V12) specifically lyse relevant malignant T cell lines and patient-derived T cell leukemias in vitro. Treatment with these antibodies also resulted in major tumor regressions in mouse models of human T cell cancers. This approach provides an off-the-shelf, T cell cancer selective targeting approach that preserves enough healthy T cells to maintain cellular immunity.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A217-A217
Author(s):  
Andy Tsun ◽  
Zhiyuan Li ◽  
Zhenqing Zhang ◽  
Weifeng Huang ◽  
Shaogang Peng ◽  
...  

BackgroundCancer immunotherapy has achieved unprecedented success in the complete remission of hematological tumors. However, serious or even fatal clinical side-effects have been associated with CAR-T therapies to solid tumors, which mainly include cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), macrophage activation syndrome, etc. Furthermore, CAR-T therapies have not yet demonstrated significant clinical efficacy for the treatment of solid tumors. Here, we present a novel T cell therapeutic platform: a Chimeric CD3e fusion protein and anti-CD3-based bispecific T cell activating element (BiTA) engineered T (CAB-T) cells, which target tumor antigens via the secretion of BiTAs that act independently of MHC interactions. Upon BiTA secretion, CAB-T cells can simultaneously achieve anti-tumor cytotoxic effects from the CAB-T cells and simultaneously activate bystander T cells.MethodsCAB-T cells were generated by co-expressing a chimeric CD3e fusion protein and an anti-CD3-based bispecific T cell activating element. The chimeric CD3e contains the extracellular domain of CD3e, a CD8 transmembrane domain, 4-1BB costimulatory domain, CD3z T cell activation domain and a FLAG tag, while the BiTA element includes a tumor antigen targeting domain fused with an anti-CD3 scFv domain and a 6x His-tag. CAR-T cells were generated as a control. Cytokine release activity, T cell activation and exhaustion markers, T cell killing activity and T cell differentiation stages were analysed. We also tested their tumor growth inhibition activity, peripheral and tumor tissue distribution, and their safety-profiles in humanized mouse models.ResultsCAB-T cells have similar or better in vitro killing activity compared with their CAR-T counterparts, with lower levels of cytokine release (IL-2 and IFNγ). CAB-T cells also showed lower levels of exhaustion markers (PD-1, LAG-3 and TIM-3), and higher ratios of naive/Tscm and Tcm T cell populations, after co-culture with their target tumor cells (48h). In in vivo studies, CAIX CAB-T and HER2 CAB-T showed superior anti-tumor efficacy and tumor tissue infiltration activity over their corresponding CAR-T cells. For CLDN18.2 CAB-T cells, similar in vivo anti-tumor efficacy was observed compared to CAR-T after T cell infusion, but blood glucose reduction and animal mortality was observed in the mice administered with CAR-T cells.ConclusionsThe advantages of CAB-T in in vitro and in vivo studies may result from TCR signal activation of both the engineered CAB-T cells and the non-engineered bystander T cells via cross-bridging by the secreted BiTA molecules, thus offering superior anti-tumor efficacy with a potential better safety-profile compared to conventional CAR-T platforms.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Author(s):  
Tobias Roider ◽  
Berit J. Brinkmann ◽  
Vladislav Kim ◽  
Mareike Knoll ◽  
Carolin Kolb ◽  
...  

Bispecific antibodies (BsAb) can induce long-term responses in refractory and relapsed B cell lymphoma patients. Nevertheless, response rates across patients are heterogenous and the factors determining quality and duration of responses are poorly understood. In order to identify key determinants of response to BsAb, we established a primary, autologous culture model allowing us to mimic treatment with CD3xCD19 and CD3xCD20 BsAb within the lymph node microenvironment ex vivo. T cell-mediated killing of lymphoma cells and proliferation of T cells varied significantly among patients but highly correlated between BsAb targeting CD20 or CD19. Ex vivo response to BsAb was significantly associated with expansion of T cells and secretion of effector molecules, such as granzyme B and perforin, but not with expression of T cell exhaustion (e.g. PD1, TIM3) or activation markers (e.g. CD25, CD69) or formation of intercellular contacts. In addition, we identified a distinct phenotype of regulatory T cells that was linked to ex vivo response independently from T cell frequency at baseline. High expression levels of Aiolos (IKZF1), ICOS and CXCR5 were positively associated with ex vivo response, whereas strong expression of Helios (IKZF2) had unfavorable impact on ex vivo response to BsAb. Furthermore, we demonstrated that lenalidomide, nivolumab and atezolizumab improved ex vivo response to BsAb by potentiating T cell effector functions. In summary, our ex vivo study identifies a distinct regulatory T cell phenotype as potential contributor to treatment failure of BsAb, and suggests drug combinations of high clinical relevance that could improve the efficacy of BsAb.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4727-4727 ◽  
Author(s):  
Seung Y. Chu ◽  
Yvonne Miranda ◽  
Sheryl Phung ◽  
Hsing Chen ◽  
Rumana Rashid ◽  
...  

Abstract CD38, being highly expressed on malignant plasma cells, is an attractive target of new therapies for multiple myeloma (MM). Several anti-CD38 antibodies including daratumumab are in clinical development; however, a limitation of such monospecific antibodies is their inability to stimulate cytotoxic T cell killing of myeloma cells. To exploit the potent mechanism of T cell immunotherapy yet preserve the favorable drug and dosing properties of therapeutic antibodies, we designed bispecific antibodies that recruit T cells to CD38+ MM cells. Such bispecifics act via a "redirected T cell-cytotoxicity" (RTCC) mechanism because they stimulate targeted T cell-mediated killing regardless of T cell receptor antigen specificity. Unlike other bispecific formats, these antibodies possess a full Fc domain and spontaneously form stable heterodimers that are readily manufactured. Their Fc domain was also engineered to abolish binding to Fcγ receptors (to reduce the potential for nonselective T cell activation), yet preserve binding to human FcRn (to maintain long serum half-life). We first generated a library of humanized and affinity-optimized anti-CD38 × anti-CD3 antibodies and measured their potency using RTCC assays in which antibodies stimulated killing of the human MM cell line RPMI8226 by human T cells. From this screen, we selected two candidates for further assessment. XmAb13243 and XmAb13551 have 21 and 0.2 nM affinities, respectively, for human CD38, and have identical T cell-engaging domains with 8 nM affinity for human CD3. XmAb13243 stimulated RTCC with an EC50 of 2.5 ng/ml (20 pM) after 24 hr, while XmAb13551 had an EC50 of ~100 pg/ml (~1 pM). In contrast to bispecific formats lacking an Fc domain, XmAb13243 and XmAb13551 had long half-lives in mice of ~7.6 and 8.3 days, respectively. Because these bispecifics were optimized for human CD38 and CD3 binding and do not crossreact with mouse antigens, we next evaluated efficacy in immunodeficient SCID mice engrafted with human PBMCs. In this model, engrafted human B cells differentiate into CD38+ plasma cells, which produce high levels of human Ig. Bispecific antibodies dosed at 0.2, 1, and 5 mg/kg, 7 and 15 days after engraftment, suppressed human IgG2, IgM, and IgE to below detectable levels by Day 14 (> 50-fold for IgG2, > 1,000-fold for IgM, and > 80-fold for IgE). Daratumumab at 5 mg/kg was markedly less potent than bispecifics, reducing IgG2 by 2-fold, IgM by 6-fold, and IgE by 3-fold. The control bispecific anti-RSV × anti-CD3 (which binds to T cells but not to CD38+ cells) had no effect on IgG2, IgM, or IgE levels. To investigate activity against an immune response requiring production of new human plasma cells, mice were vaccinated with tetanus toxoid 8 days after engraftment. Anti-CD38 × anti-CD3 bispecifics suppressed human anti-tetanus antibody titers to baseline (> 100-fold), while daratumumab suppressed titers by only 2-fold. We next assessed efficacy in cynomolgus monkeys. Unlike daratumumab, which does not crossreact with monkey CD38, XmAb13243 and XmAb13551 bind to both CD38 and CD3 in monkeys (23 and 0.3 nM, respectively, to CD38, and 6 nM to CD3 for both). We treated monkeys with a single dose of XmAb13243 or XmAb13551 at 2, 5, and 20 μg/kg. T cells were activated within 1 hr, as measured by dramatic increases in CD25 and CD69 activation markers. Within 8 hr, T cells depleted circulating CD38+ cells by > 95% at the 20 μg/kg dose. Our results demonstrate that XmAb13243 and XmAb13551 effectively recruit T cells to kill CD38+ cells in vivo. Our preclinical data in monkeys and humanized mice provide a rationale for clinical testing of anti-CD38 × anti-CD3 bispecific antibodies in patients with multiple myeloma and other CD38+ malignancies. Disclosures Chu: Xencor: Employment, Equity Ownership. Miranda:Xencor, Inc.: Employment, Equity Ownership. Phung:Xencor, Inc.: Employment, Equity Ownership. Chen:Xencor, Inc.: Employment, Equity Ownership. Rashid:Xencor, Inc.: Employment, Equity Ownership. Endo:Xencor, Inc.: Employment, Equity Ownership. Chan:Xencor, Inc.: Employment, Equity Ownership. Pong:Xencor, Inc.: Employment, Equity Ownership. Bonzon:Xencor, Inc.: Employment, Equity Ownership. Muchhal:Xencor, Inc.: Employment, Equity Ownership. Leung:Xencor, Inc.: Employment, Equity Ownership. Bernett:Xencor, Inc.: Employment, Equity Ownership. Moore:Xencor, Inc.: Employment, Equity Ownership. Szymkowski:Xencor, Inc.: Employment, Equity Ownership. Desjarlais:Xencor, Inc.: Employment, Equity Ownership.


Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2180-2186 ◽  
Author(s):  
Shuiping Jiang ◽  
Niels Camara ◽  
Giovanna Lombardi ◽  
Robert I. Lechler

Abstract Although CD4+CD25+ regulatory T cells are pivotal in the prevention of autoimmunity and appear to mediate transplantation tolerance, little is known concerning their antigen specificity. Here we describe the induction of a human CD4+CD25+ regulatory T-cell line specific for a defined peptide alloantigen (human leukocyte antigen A2 [HLA-A2] 138-170) by priming purified CD4+CD25+ cells ex vivo. The regulatory cells were anergic and retained their ability to suppress antigen-driven responses of CD4+CD25– cells. They inhibited not only interleukin 2 (IL-2) secretion by CD4+CD25– T cells specific for the same peptide but also direct alloresponse of naive CD4+CD25– T cells stimulated by semiallogeneic dendritic cells (DCs) in the presence of the peptide (“linked suppression”). They also suppressed the response of CD4+ T cells specific for viral and bacterial antigens. The suppressive T-cell line showed sustained high CD25 expression. These findings suggest that peripheral CD4+CD25+ regulatory cells are a precommitted cell lineage from which cells with specificity for non–self-peptides can be selected. This may pave the way for inducing and expanding peptide antigen-specific regulatory T cells ex vivo for cell therapy in transplantation, allergy, and autoimmune disease.


2016 ◽  
Vol 113 (41) ◽  
pp. E6192-E6198 ◽  
Author(s):  
Laura F. Su ◽  
Daniel del Alcazar ◽  
Erietta Stelekati ◽  
E. John Wherry ◽  
Mark M. Davis

The T-cell receptor (TCR) is required for maturation and function of regulatory T cells (Tregs), but the ligand specificities of Tregs outside the context of transgenic TCRs are largely unknown. Using peptide–MHC tetramers, we isolated rare specific Foxp3+ cells directly ex vivo from adult peripheral blood and defined their frequency and phenotype. We find that a proportion of circulating Tregs recognize foreign antigens and the frequency of these cells are similar to that of self-reactive Tregs in the absence of cognate infection. In contrast, the frequencies of Tregs that recognize some common microbial antigens are significantly reduced in the blood of most adults. Exposure to peripheral antigens likely has a major influence on the balance between Tregs and conventional T-cell subsets because a larger proportion of flu-specific T cells has a regulatory cell phenotype in the cord blood. Consistent with this finding, we show that lymphocytic choriomeningitis virus infection can directly modulate the ratio of virus-specific effectors and Tregs in mice. The resulting change in the balance within an antigen-specific T-cell population further correlates with the magnitude of effector response and the chronicity of infection. Taken together, our data highlight the importance of antigen specificity in the functional dynamics of the T-cell repertoire. Each specific population of CD4+ T cells in human peripheral blood contains a subset of Tregs at birth, but the balance between regulatory and effector subsets changes in response to peripheral antigen exposure and this could impact the robustness of antipathogen immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nayoun Kim ◽  
Jong-Min Lee ◽  
Eun-Jee Oh ◽  
Dong Wook Jekarl ◽  
Dong-Gun Lee ◽  
...  

BackgroundImmunological characteristics of COVID-19 show pathological hyperinflammation associated with lymphopenia and dysfunctional T cell responses. These features provide a rationale for restoring functional T cell immunity in COVID-19 patients by adoptive transfer of SARS-CoV-2 specific T cells.MethodsTo generate SARS-CoV-2 specific T cells, we isolated peripheral blood mononuclear cells from 7 COVID-19 recovered and 13 unexposed donors. Consequently, we stimulated cells with SARS-CoV-2 peptide mixtures covering spike, membrane and nucleocapsid proteins. Then, we culture expanded cells with IL-2 for 21 days. We assessed immunophenotypes, cytokine profiles, antigen specificity of the final cell products.ResultsOur results show that SARS-CoV-2 specific T cells could be expanded in both COVID-19 recovered and unexposed groups. Immunophenotypes were similar in both groups showing CD4+ T cell dominance, but CD8+ and CD3+CD56+ T cells were also present. Antigen specificity was determined by ELISPOT, intracellular cytokine assay, and cytotoxicity assays. One out of 14 individuals who were previously unexposed to SARS-CoV-2 failed to show antigen specificity. Moreover, ex-vivo expanded SARS-CoV-2 specific T cells mainly consisted of central and effector memory subsets with reduced alloreactivity against HLA-unmatched cells suggesting the possibility for the development of third-party partial HLA-matching products.DiscussionIn conclusion, our findings show that SARS-CoV-2 specific T cell can be readily expanded from both COVID-19 and unexposed individuals and can therefore be manufactured as a biopharmaceutical product to treat severe COVID-19 patients.One Sentence SummaryEx-vivo expanded SARS-CoV-2 antigen specific T cells developed as third-party partial HLA-matching products may be a promising approach for treating severe COVID-19 patients that do not respond to previous treatment options.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Sign in / Sign up

Export Citation Format

Share Document