scholarly journals Large-scale proteome analysis of CSF implicates altered glucose metabolism in Alzheimer's disease

Author(s):  
Daniel J. Panyard ◽  
Justin McKetney ◽  
Yuetiva K. Deming ◽  
Autumn R. Morrow ◽  
Gilda E. Ennis ◽  
...  

A major hallmark of Alzheimer's disease (AD) is the aggregation of misfolded proteins (β-amyloid (A) and hyperphosphorylated tau (T)) in the brain. As these proteins can be monitored by cerebrospinal fluid (CSF) measures, the AD proteome in CSF has been of particular interest. Here, we conducted a proteome-wide assessment of the CSF in an AD cohort among participants with and without AD pathology (n = 137 total participants: 56 A-T-, 39 A+T-, and 42 A+T+; 915 proteins analyzed), identifying a diverse set of proteins in the CSF enriched for extracellular and immune system processes. We then interrogated the proteome using the amyloid, tau, and neurodegeneration (ATN) framework of AD and a panel of 9 CSF biomarkers for neurodegeneration and neuroinflammation. After multiple testing correction, we identified a total of 61 proteins significantly associated with AT group (P < 5.46 x 10-5; strongest was SMOC1, P = 1.87 x 10-12) and 636 significant protein-biomarker associations (P < 6.07 x 10-6; strongest was a positive association between neurogranin and EPHA4, P = 2.42 x 10-25) across all measures except for interleukin-6, which had no significantly associated proteins. Community network and pathway enrichment analyses highlighted three biomarker-associated protein networks: one related to amyloid and tau measures, one to CSF neurogranin, and one to the remaining CSF biomarkers. Glucose metabolic pathways were enriched primarily among the amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, both of which were replicated as strongly associated with AD (P = 1.07 x 10-19 and P = 7.43 x 10-14, respectively) in an independent CSF proteomics cohort (n = 717 participants). Comparative performance of the CSF proteome in predicting AT categorization was high (mean AUC range 0.891-0.924 with number of protein predictors ranging from 37-97) relative to other omic predictors from the genome, CSF metabolome, and demographics from the same cohort of individuals. Collectively, these results emphasize the importance of the CSF proteome relative to other omics and implicate glucose metabolic dysregulation as amyloid and tau pathology emerges in AD.

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Niklas Mattsson ◽  
Henrik Zetterberg ◽  
kaj Blennow

Several single-center studies have confirmed the usability of cerebrospinal fluid (CSF) biomarkers for the diagnosis of Alzheimer's disease (AD), even in early disease stages. Large scale multicenter studies have principally confirmed this, although such studies have also indicated the presence of significant intercenter and interlaboratory variations in biomarker measurements. Such variations may hamper the development of biomarkers and their introduction into clinical routine practice. Recently a quality control program run by the Alzheimer's Association was started in order to harmonize procedures of laboratories world-wide. This program provides both standardized guide lines and external control CSF samples, and will allow longitudinal evaluation of laboratory performance.


2021 ◽  
Vol 29 ◽  
Author(s):  
Danyelle Sadala ◽  
Vyctoria Ramos ◽  
Danielle dos Santos Maia Salheb de Oliveira ◽  
Maria José da Silva Fernandes ◽  
Marcia Regina Cominetti

Introduction. The amyloid cascade hypothesis proposes that extracellular senile plaques - largely composed of aggregated beta-amyloid (Aβ) peptides - are responsible for the events that lead to neuronal death that occurs in Alzheimer's disease (AD). On the other hand, the hyperphosphorylated (p-tau) and unstructured tau protein is responsible for intracellular neurofibrillary tangles, also common in AD. Clinical diagnostic criteria for AD include Aβ and p-tau biomarker tests in cerebrospinal fluid (CSF), in addition to neuroimaging measures, clinical history, and psychometric tests. However, due to their invasive nature, side effects and need for trained personnel in a hospital environment for their collection, CSF biomarkers are not suitable for large-scale screening. Therefore, alternative blood-based biomarkers are under intense investigation. Objective. Focus on recent advances in different p-tau isoforms as blood-based AD biomarkers. Method. Review performed by searches in Medline/PubMed databases. Results. The p-tau isoforms 181 and 217 represent accessible and scalable molecules for screening and diagnosing AD, mainly due to their ability to differentiate patients with the disease from cognitively healthy participants. These results should be reproduced in larger and more representative cohorts of population diversity. Conclusions. This review provides a more comprehensive exploration of blood p-tau as a specific molecular biomarker for AD, which could contribute not only to screening pre-symptomatic patients for clinical trials, but also to monitoring disease progression and evaluating modifying therapies. of the disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Francesca Zimetti ◽  
Maria Pia Adorni ◽  
Judit Marsillach ◽  
Cinzia Marchi ◽  
Alessandro Trentini ◽  
...  

The protein composition of high-density lipoprotein (HDL) is extremely fluid. The quantity and quality of protein constituents drive the multiple biological functions of these lipoproteins, which include the ability to contrast atherogenesis, sustained inflammation, and toxic effects of reactive species. Several diseases where inflammation and oxidative stress participate in the pathogenetic process are characterized by perturbation in the HDL proteome. This change inevitably affects the functionality of the lipoprotein. An enlightening example in this frame comes from the literature on Alzheimer’s disease (AD). Growing lines of epidemiological evidence suggest that loss of HDL-associated proteins, such as lipoprotein phospholipase A2 (Lp-PLA2), glutathione peroxidase-3 (GPx-3), and paraoxonase-1 and paraoxonase-3 (PON1, PON3), may be a feature of AD, even at the early stage. Moreover, the decrease in these enzymes with antioxidant/defensive action appears to be accompanied by a parallel increase of prooxidant and proinflammatory mediators, in particular myeloperoxidase (MPO) and serum amyloid A (SAA). This type of derangement of balance between two opposite forces makes HDL dysfunctional, i.e., unable to exert its “natural” vasculoprotective property. In this review, we summarized and critically analyzed the most significant findings linking HDL accessory proteins and AD. We also discuss the most convincing hypothesis explaining the mechanism by which an observed systemic occurrence may have repercussions in the brain.


2015 ◽  
Vol 11 (11) ◽  
pp. 1306-1315 ◽  
Author(s):  
Michael Ewers ◽  
Niklas Mattsson ◽  
Lennart Minthon ◽  
José L. Molinuevo ◽  
Anna Antonell ◽  
...  

2021 ◽  
Author(s):  
Laura Heath ◽  
John C. Earls ◽  
Andrew T. Magis ◽  
Sergey A. Kornilov ◽  
Jennifer C. Lovejoy ◽  
...  

AbstractDeeply phenotyped cohort data can elucidate differences associated with genetic risk for common complex diseases across an age spectrum. Previous work has identified genetic variants associated with Alzheimer’s disease (AD) risk from large-scale genome-wide association study meta-analyses. To explore effects of known AD-risk variants, we performed a phenome-wide association study on ~2000 clinical, proteomic, and metabolic blood-based analytes obtained from 2,831 cognitively normal adult clients of a consumer-based scientific wellness company. Results uncovered statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1, ABCA7, INPP5D, and APOE). These effects were detectable from early adulthood. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. Sex-stratified GWAS results from an independent AD case-control meta-analysis supported sexspecific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. These analyses support evidence from previous functional genomics studies in the identification of a causal variant within the PILRA gene. Taken together, this study highlights clues to the earliest effects of AD genetic risk variants in individuals where disease symptoms have not (yet) arisen.


2020 ◽  
Vol 17 (2) ◽  
pp. 141-157 ◽  
Author(s):  
Dubravka S. Strac ◽  
Marcela Konjevod ◽  
Matea N. Perkovic ◽  
Lucija Tudor ◽  
Gordana N. Erjavec ◽  
...  

Background: Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer’s disease. Objective: The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer’s disease. Method: PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. Results: We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer’s disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. Conclusion: Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer’s disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Manan Binth Taj Noor ◽  
Nusrat Zerin Zenia ◽  
M Shamim Kaiser ◽  
Shamim Al Mamun ◽  
Mufti Mahmud

Abstract Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.


2021 ◽  
pp. 1-13
Author(s):  
Jonathan D. Drake ◽  
Alison B. Chambers ◽  
Brian R. Ott ◽  
Lori A. Daiello ◽  

Background: Cerebrovascular dysfunction confers risk for functional decline in Alzheimer’s disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. Objective: We utilized Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. Methods: Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). Results: Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ 42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ 42 (all <  p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. Conclusion: Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.


2021 ◽  
pp. 1-11
Author(s):  
Adam S. Bernstein ◽  
Steven Z. Rapcsak ◽  
Michael Hornberger ◽  
Manojkumar Saranathan ◽  

Background: Increasing evidence suggests that thalamic nuclei may atrophy in Alzheimer’s disease (AD). We hypothesized that there will be significant atrophy of limbic thalamic nuclei associated with declining memory and cognition across the AD continuum. Objective: The objective of this work was to characterize volume differences in thalamic nuclei in subjects with early and late mild cognitive impairment (MCI) as well as AD when compared to healthy control (HC) subjects using a novel MRI-based thalamic segmentation technique (THOMAS). Methods: MPRAGE data from the ADNI database were used in this study (n = 540). Healthy control (n = 125), early MCI (n = 212), late MCI (n = 114), and AD subjects (n = 89) were selected, and their MRI data were parcellated to determine the volumes of 11 thalamic nuclei for each subject. Volumes across the different clinical subgroups were compared using ANCOVA. Results: There were significant differences in thalamic nuclei volumes between HC, late MCI, and AD subjects. The anteroventral, mediodorsal, pulvinar, medial geniculate, and centromedian nuclei were significantly smaller in subjects with late MCI and AD when compared to HC subjects. Furthermore, the mediodorsal, pulvinar, and medial geniculate nuclei were significantly smaller in early MCI when compared to HC subjects. Conclusion: This work highlights nucleus specific atrophy within the thalamus in subjects with early and late MCI and AD. This is consistent with the hypothesis that memory and cognitive changes in AD are mediated by damage to a large-scale integrated neural network that extends beyond the medial temporal lobes.


Sign in / Sign up

Export Citation Format

Share Document