scholarly journals Impaired Lymphocyte Responses in Pediatric Sepsis Vary by Pathogen Type

Author(s):  
Robert B Lindell ◽  
Donglan Zhang ◽  
Jenny Bush ◽  
Douglas C Wallace ◽  
Joshua D Rabinowitz ◽  
...  

Background: Sepsis is the leading cause of death in hospitalized children worldwide. Despite its hypothesized immune-mediated mechanism, targeted immunotherapy for sepsis is not available for clinical use. Objective: To determine the association between cytometric, proteomic, bioenergetic, and metabolomic abnormalities and pathogen type in pediatric sepsis. Methods: Serial PBMC samples were obtained from 14 sepsis patients (34 samples) and 7 control patients for this pilot study. Flow cytometry was used to define immunophenotype, including T cell subset frequency and activation state, and assess intracellular cytokine production. Global immune dysfunction was assessed by TNF-α production capacity and monocyte HLA-DR expression. Mitochondrial function was assessed by bulk respirometry. Metabolites were measured by liquid chromatography-mass spectrometry. Results were compared by timepoint and pathogen type. For detailed Methods, please see the Methods section in this article's Online Repository at www.jacionline.org. Results: Sepsis patients were older and had higher illness severity compared to controls; demographics were otherwise similar. Compared to controls, sepsis patients demonstrated global immune dysfunction, loss of peripheral of non-naive CD4+ T cells, and reduced PBMC mitochondrial function. Metabolomic findings in sepsis patients were most pronounced at sepsis onset and included elevated uridine and 2-dehydrogluconate and depleted citrulline. Loss of peripheral non-naive CD4+ T cells was associated with immune dysfunction and reduced cytokine production despite increased T cell activation. CD4+ T cell differentiation and corresponding pro- and anti-inflammatory cytokines varied by pathogen. Conclusion: Pediatric sepsis patients exhibit a complex, dynamic physiologic state characterized by immunometabolic dysregulation which varies by pathogen type.

2011 ◽  
Vol 106 (08) ◽  
pp. 353-362 ◽  
Author(s):  
Norbert Gerdes ◽  
Linjing Zhu ◽  
Maria Ersoy ◽  
Andreas Hermansson ◽  
Paul Hjemdahl ◽  
...  

SummaryAtherosclerosis is an inflammatory and thrombotic disease. Both platelets and lymphocytes play important roles in atherogenesis. However, information on their interaction is limited. We therefore studied how platelets regulate CD4+ T cell activation and differentiation. Human CD4+ T cells and autologous platelets were co-cultured. Platelets concentration-dependently enhanced anti-CD3/CD28-induced IFNγ production by CD4+ T cells, but attenuated their proliferation. Abrogation of heterotypic cell-cell contact partially reversed the enhancement, and supernatant from activated platelets partially mimicked the enhancement, suggesting that platelets exert their effects via both soluble mediators and direct cell-cell contact. Platelets enhanced the production of IL-10 and cytokines characteristic for type 1 T helper (TH1) (IFNγ/ TNFα) and TH17 (IL-17) cells, but influenced TH2 cytokines (IL-4/IL-5) little. The cytokine responses were accompanied by enhanced TH1/TH17/TReg differentiation. Using neutralising antibodies and recombinant PF4, RANTES, and TGFβ, we found that platelet-derived PF4 and RANTES enhanced both pro- and anti-inflammatory cytokine production, whilst recombinant TGFβ enhanced IL-10 but not TNFα production. In conclusion, platelets enhance the differentiation and cytokine production of anti-CD3/CD28-stimulated CD4+ T cells via both multiple chemokines and direct cell-cell contact. Our study provides new insights into the cross-talk between thrombosis and adaptive immunity, and indicates that platelets can enhance T-effector cell development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rhianna Jones ◽  
Kyle Kroll ◽  
Courtney Broedlow ◽  
Luca Schifanella ◽  
Scott Smith ◽  
...  

AbstractHIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques. Our study revealed that similar to the GI mucosae, oral CD4 + T cells were rapidly depleted, and as one of the first comprehensive analyses of the oral microflora in SIV infection, we also observed significant modulation among two genera, Porphyromonas and Actinobacillus, early after infection. Interestingly, although PBX therapy did not substantially protect against oral dysbiosis or ameliorate cell loss, it did somewhat dampen inflammation and T cell activation. Collectively, these data provide one of the most comprehensive evaluations of SIV-induced changes in oral microbiome and CD4 + T cell populations, and also suggest that oral PBX may have some anti-inflammatory properties in lentivirus infections.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


Author(s):  
Njabulo Ngwenyama ◽  
Annet Kirabo ◽  
Mark Aronovitz ◽  
Francisco Velázquez ◽  
Francisco Carrillo-Salinas ◽  
...  

Background: Despite the well-established association between T cell-mediated inflammation and non-ischemic heart failure (HF), the specific mechanisms triggering T cell activation during the progression of HF and the antigens involved are poorly understood. We hypothesized that myocardial oxidative stress induces the formation of isolevuglandin (IsoLG)-modified proteins that function as cardiac neoantigens to elicit CD4+ T cell receptor (TCR) activation and promote HF. Methods: We used transverse aortic constriction (TAC) in mice to trigger myocardial oxidative stress and T cell infiltration. We profiled the TCR repertoire by mRNA sequencing of intramyocardial activated CD4+ T cells in Nur77 GFP reporter mice, which transiently express GFP upon TCR engagement. We assessed the role of antigen presentation and TCR specificity in the development of cardiac dysfunction using antigen presentation-deficient MhcII -/- mice, and TCR transgenic OTII mice that lack specificity for endogenous antigens. We detected IsoLG-protein adducts in failing human hearts. We also evaluated the role of reactive oxygen species (ROS) and IsoLGs in eliciting T cell immune responses in vivo by treating mice with the antioxidant TEMPOL, and the IsoLG scavenger 2-hydroxybenzylamine (2-HOBA) during TAC, and ex-vivo in mechanistic studies of CD4+ T cell proliferation in response to IsoLG-modified cardiac proteins. Results: We discovered that TCR antigen recognition increases in the left ventricle (LV) as cardiac dysfunction progresses, and identified a limited repertoire of activated CD4+ T cell clonotypes in the LV. Antigen presentation of endogenous antigens was required to develop cardiac dysfunction since MhcII -/- mice reconstituted with CD4+ T cells, and OTII mice immunized with their cognate antigen were protected from TAC-induced cardiac dysfunction despite the presence of LV-infiltrated CD4+ T cells. Scavenging IsoLGs with 2-HOBA reduced TCR activation and prevented cardiac dysfunction. Mechanistically, cardiac pressure overload resulted in ROS dependent dendritic cell accumulation of IsoLG-protein adducts which induced robust CD4+ T cell proliferation. Conclusions: Collectively, our study demonstrates an important role of ROS-induced formation of IsoLG-modified cardiac neoantigens that lead to TCR-dependent CD4+ T cell activation within the heart.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A929-A930
Author(s):  
Victoria Smith ◽  
Sterling Eckard ◽  
Bianca Rojo ◽  
Patrick Chun

BackgroundMDSC produce numerous immune-suppressive factors and are associated with poor outcomes across different cancers. They are frequently elevated in patients experiencing inadequate benefit from checkpoint blockade and there is a crucial need for therapies for this patient population. MDSC are recruited from bone marrow in response to both tumor signaling and T cell activation, and their accumulation in tumors and lymphatics can limit the potential benefits of immunostimulatory therapies. AMV564 is a bivalent T cell engager that selectively depletes MDSC. In a phase 1 study, pharmacodynamic analyses revealed significant depletion of MDSC, T cell activation, expansion of the T cell repertoire and an IFN-gamma-dominant cytokine profile with comparatively limited IL6 induction.1 Monotherapy activity including a confirmed RECIST complete response was observed. The clinical and pharmacodynamic profiles of AMV564 are being further evaluated in specific patient cohorts, including patients progressing on checkpoint blockade.MethodsIn a phase 1b expansion study (NCT04128423), patient cohorts with cancers more likely to include actionable tumor antigens were selected for treatment with AMV564, with most patients representing checkpoint treatment failures. An additional cohort of patients included heterogeneous tumor types stratified by tumor mutation burden (TMB) score from circulating tumor DNA. Pharmacodynamic analyses including direct immunophenotyping (flow cytometry) of T and myeloid cell compartments in peripheral blood were performed on patients treated with AMV564 (15 µg daily for 10 of 21 days by subcutaneous injection).ResultsChanges in myeloid and T cell profiles consistent with the pharmacodynamic signature of AMV564 were observed in patients receiving AMV564 despite one or more prior lines of checkpoint blockade therapy. Notably, both high baseline MDSC and elevated induction of MDSC after T cell activation were apparent (figure 1). Control of MDSC by AMV564 was associated with increases in both effector CD8 and CD4 T cells (figure 2). Extremely elevated levels of regulatory T cells were often observed: after treatment with AMV564, a Th-1-like repolarization of these cells was apparent, often associated with reduction in CD25 (figure 3).Abstract 887 Figure 1Significantly higher induction of M-MDSC is apparent in patients previously receiving checkpoint blockade (CPB) after T cell activation by AMV564.Abstract 887 Figure 2Treatment with AMV564 promotes increases in effector CD8 and CD4 T cells in patients previously treated with CPB (examples shown are Merkel cell carcinoma (MCC) and head and neck squamous cell carcinoma (HNSCC)).Abstract 887 Figure 3Th-1 like repolarization of Treg is apparent in patients previously treated with CPB (MCC, HNSCC examples) after treatment with AMV564 (a). Example CD25 low and T-Bet high cells in HNSCC patient (arrow, b).ConclusionsTreatment with AMV564 yielded substantial reductions in MDSC and favorable polarization of CD8 and CD4 T cells, including Th1-like polarization of Treg. This signature was apparent in patients previously treated with checkpoint inhibitors, despite strong induction of MDSC in response to T cell activation, and high baseline levels (>20%) of Treg.Trial RegistrationNCT04128423ReferencesSmith V, Eckard S, Rettig MP, et al. AMV564, a bivalent, bispecific T-cell engager, depletes myeloid derived suppressor cells and activates T cells in cancer patients. Cancer Res 2020;80(16 Supplement):5699.Ethics ApprovalThis study was approved by the Institutional Review Board (IRB) or Independent Ethics Committee (IEC) at each participating institution (including Ohio State University, MD Anderson Cancer Center, Duke University, University of California Los Angeles, Advent Health, Christ Hospital). All participants gave informed consent for samples used to generate pharmacodynamic data. No sensitive of identifiable information is included.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


1985 ◽  
Vol 161 (6) ◽  
pp. 1513-1524 ◽  
Author(s):  
T Hara ◽  
S M Fu ◽  
J A Hansen

In previous studies (17-21), monoclonal antibody (mAb) 9.3 has been shown to react with a major population of human T cells, which include T4+ helper/inducer T cells and T8+ cytotoxic T cells. In this investigation, mAb 9.3 was shown to precipitate a disulfide-bonded dimer of a 44 kD polypeptide. Comodulation experiments showed that this molecule is not linked to T3/Ti or T11 antigens. mAb 9.3 was capable of inducing T cell proliferation in the presence of 12-o-tetradecanoyl phorbol-13-acetate (TPA). This effect was monocyte-independent. T cell activation with mAb 9.3 and TPA was associated with increases in interleukin 2(IL-2) receptor expression and IL-2 secretion. mAb 9.3 did not activate T cells, even with the addition of IL-1 or IL-2. Modulation of the T3 complex did not abolish mAb 9.3-induced T cell proliferation in the presence of TPA. These results suggest that the 9.3 antigen may serve as a receptor for an activation pathway restricted to a T cell subset.


Author(s):  
M E Jacobs ◽  
J N Pouw ◽  
M A Olde Nordkamp ◽  
T R D J Radstake ◽  
E F A Leijten ◽  
...  

Abstract Background Signals at the contact site of antigen-presenting cells (APCs) and T cells help orchestrate the adaptive immune response. CD155 on APCs can interact with the stimulatory receptor DNAM1 or inhibitory receptor TIGIT on T cells. The CD155/DNAM1/TIGIT axis is under extensive investigation as immunotherapy target in inflammatory diseases including cancer, chronic infection and autoimmune diseases. We investigated a possible role for CD155/DNAM1/TIGIT signaling in psoriatic disease. Methods By flow cytometry we analyzed peripheral blood mononuclear cells of patients with psoriasis (n=20) or psoriatic arthritis (n=21), and healthy individuals (n=7). We measured CD155, TIGIT and DNAM1 expression on leukocyte subsets and compared activation-induced cytokine production between CD155-positive and -negative APCs. We assessed the effects of TIGIT and DNAM1 blockade on T cell activation, and related the expression of CD155/DNAM1/TIGIT axis molecules to measures of disease activity. Results High CD155 expression associates with TNF production in myeloid and plasmacytoid dendritic cells (DC). In CD1c+ myeloid DC, activation-induced CD155 expression associates with increased HLA-DR expression. CD8 T cells - but not CD4 T cells - express high levels of TIGIT. DNAM1 blockade decreases T cell pro-inflammatory cytokine production, while TIGIT blockade increased T cell proliferation. Finally, T cell TIGIT expression shows an inverse correlation with inflammation biomarkers in psoriatic disease. Conclusion CD155 is increased on pro-inflammatory APCs, while the receptors DNAM1 and TIGIT expressed on T cells balance the inflammatory response by T cells. In psoriatic disease, low TIGIT expression on T cells is associated with systemic inflammation.


Sign in / Sign up

Export Citation Format

Share Document