scholarly journals A Drosophila Su(H) Model of Adams-Oliver Syndrome Reveals Notch Cofactor Titration as a Mechanism Underlying Developmental Defects

2021 ◽  
Author(s):  
Ellen K. Gagliani ◽  
Lisa M. Gutzwiller ◽  
Yi Kuang ◽  
Yoshinobu Odaka ◽  
Phillipp Hoffmeister ◽  
...  

ABSTRACTNotch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that Drosophila with a single copy of the AOS-like Su(H) allele behave in an opposing manner as flies with a Su(H) null allele due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants decrease DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby a single RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A506-A506
Author(s):  
Yen-Shan Chen ◽  
Joseph D Racca ◽  
Alicia Belgorosky ◽  
Michael Aaron Weiss

Abstract The development of organisms is regulated by a fine-tuned gene-regulatory network, which is driven by transcription factors (TFs). In the embryogenesis, these TFs control diverse cell fates and final body plan. This is precisely regulated by a specific DNA-binding process and enhanceosome formation. A model is provided by testis determination in mammals, which is initiated by a Y-encoded architectural transcription factor, SRY. Mutations in SRY cause gonadal dysgenesis leading to various developmental defects. Such mutations cluster in SRY’s high mobility group (HMG) box, a sequence-specific DNA-binding domain shared by a conserved family of TFs. Here, we have characterized several mutations at the same position in HMG box, which are compatible with either male or female phenotypes as observed in an XY father and XY daughter, respectively. These mutations, at a function-unknown motif in the SRY HMG box, markedly disturb the specific DNA affinity. On transient transfection of human and rodent cell lines, the SRY variants exhibit decreased specific DNA-binding activity (relative to wild type) are associated with mis-formed enhanceosomes. The variants’ gene regulatory activities were reduced by 2-fold relative to wild-type SRY at similar levels of mRNA expression. When engineered mutations that functions to increase the DNA-binding specificity were deployed to SRY variants, the transcriptional activity was in association with restored occupancy of sex-specific enhancer elements in principal downstream gene Sox9. Our findings define a novel mechanism of impaired organogenesis, disturbed specific DNA-binding activity of a master transcription factor, leading to a developmental decision poised at the edge of ambiguity.


2001 ◽  
Vol 183 (10) ◽  
pp. 3160-3168 ◽  
Author(s):  
Inês Chen ◽  
Emil C. Gotschlich

ABSTRACT Neisseria gonorrhoeae is naturally able to take up exogenous DNA and undergo genetic transformation. This ability correlates with the presence of functional type IV pili, and uptake of DNA is dependent on the presence of a specific 10-bp sequence. Among the known competence factors in N. gonorrhoeae, none has been shown to interact with the incoming DNA. Here we describe ComE, a DNA-binding protein involved in neisserial competence. The genecomE was identified through similarity searches in the gonococcal genome sequence, using as the query ComEA, the DNA receptor in competent Bacillus subtilis. The gene comEis present in four identical copies in the genomes of both N. gonorrhoeae and Neisseria meningitidis, located downstream of each of the rRNA operons. Single-copy deletion ofcomE in N. gonorrhoeae did not have a measurable effect on competence, whereas serial deletions led to gradual decrease in transformation frequencies, reaching a 4 × 104-fold reduction when all copies were deleted. Transformation deficiency correlated with impaired ability to take up exogenous DNA; however, the mutants presented normal piliation and twitching motility phenotype. The product of comE has 99 amino acids, with a predicted signal peptide; by immunodetection, a 8-kDa protein corresponding to processed ComE was observed in different strains of N. gonorrhoeae and N. meningitidis. Recombinant His-tagged ComE showed DNA binding activity, without any detectable sequence specificity. Thus, we identified a novel gonococcal DNA-binding competence factor which is necessary for DNA uptake and does not affect pilus biogenesis or function.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu-Hao Liou ◽  
Sameer K. Singh ◽  
Robert H. Singer ◽  
Robert A. Coleman ◽  
Wei-Li Liu

AbstractThe tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53’s DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II’s jaw that contacts downstream DNA. These findings suggest that p53’s functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.


2008 ◽  
Vol 190 (21) ◽  
pp. 7241-7250 ◽  
Author(s):  
Lina Li ◽  
David M. Kehoe

ABSTRACT RcaC is a large, complex response regulator that controls transcriptional responses to changes in ambient light color in the cyanobacterium Fremyella diplosiphon. The regulation of RcaC activity has been shown previously to require aspartate 51 and histidine 316, which appear to be phosphorylation sites that control the DNA binding activity of RcaC. All available data suggest that during growth in red light, RcaC is phosphorylated and has relatively high DNA binding activity, while during growth in green light RcaC is not phosphorylated and has less DNA binding activity. RcaC has also been found to be approximately sixfold more abundant in red light than in green light. Here we demonstrate that the light-controlled abundance changes of RcaC are necessary, but not sufficient, to direct normal light color responses. RcaC abundance changes are regulated at both the RNA and protein levels. The RcaC protein is significantly less stable in green light than in red light, suggesting that the abundance of this response regulator is controlled at least in part by light color-dependent proteolysis. We provide evidence that the regulation of RcaC abundance does not depend on any RcaC-controlled process but rather depends on the presence of the aspartate 51 and histidine 316 residues that have previously been shown to control the activity of this protein. We propose that the combination of RcaC abundance changes and modification of RcaC by phosphorylation may be necessary to provide the dynamic range required for transcriptional control of RcaC-regulated genes.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Sign in / Sign up

Export Citation Format

Share Document