scholarly journals Characterization of new recombinant Immunoglobulins type-M binding to C1q by Biolayer Interferometry

2021 ◽  
Author(s):  
Anne Chouquet ◽  
Andrea J. Pinto ◽  
Wai Li W Ling ◽  
Julia Hennicke ◽  
Isabelle Bally ◽  
...  

The Immunoglobulins type-M (IgMs) are one of the first antibody classes mobilized during immune responses against pathogens and tumor cells. Binding to specific target antigens enables the interaction with the C1q complex which strongly activates the classical complement pathway. This biological function is the base for the huge therapeutic potential of IgMs but due to their high oligomeric complexity, in vitro production as well as biochemical and biophysical characterizations are challenging. In the present study, we present new attempts of recombinant production of two IgM models (IgM617 and IgM012) and the evaluation of their polymer distribution using biophysical methods (AUC, SEC-MALLS, Mass Photometry, transmission EM). Each IgM has an individual specific expression yield with different protein quality likely due to intrinsic IgM properties and patterning. Despite the presence of additional oligomeric states, purified recombinant IgMs retain their ability to activate complement in a C1q dependent manner. More importantly, a new method to evaluate their functional quality attribute by characterizing the kinetics of C1q binding to recombinant IgM has been developed using BioLayer Interferometry (BLI). We show that recombinant IgMs possess similar C1q binding properties as IgMs purified from human plasma.

2020 ◽  
Author(s):  
Ian W. Luecke ◽  
Gloria Lin ◽  
Stephanie Santarriaga ◽  
K. Matthew Scaglione ◽  
Allison D. Ebert

AbstractProtein misfolding and aggregation are shared features of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and protein quality control disruption contributes to neuronal toxicity. Therefore, reducing protein aggregation could hold therapeutic potential. We previously identified a novel chaperone protein, serine-rich chaperone protein 1 (SRCP1), that effectively prevents protein aggregation in cell culture and zebrafish models of Huntington’s disease. Here we tested whether this benefit extends to aggregated proteins found in ALS. We used viral-mediated expression of SRCP1 in in vitro and in vivo models of ALS. We found that SRCP1 reduced insoluble SOD1 protein levels in HEK293T cells overexpressing either the A4V or G93R mutant SOD1. However, the reduction of insoluble protein was not observed in either mutant C9orf72 or SOD1 ALS iPSC-derived motor neurons infected with a lentivirus expressing SRCP1. SOD1 G93A ALS mice injected with AAV-SRCP1 showed a small but significant reduction in insoluble and soluble SOD1 in both the brain and spinal cord, but SRCP1 expression did not improve mouse survival. These data indicate that SRCP1 likely reduces insoluble protein burden in a protein and/or context-dependent manner indicating a need for additional insight into SRCP1 function and therapeutic potential.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Ian W. Luecke ◽  
Gloria Lin ◽  
Stephanie Santarriaga ◽  
K. Matthew Scaglione ◽  
Allison D. Ebert

AbstractProtein misfolding and aggregation are shared features of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and protein quality control disruption contributes to neuronal toxicity. Therefore, reducing protein aggregation could hold therapeutic potential. We previously identified a novel chaperone protein, serine-rich chaperone protein 1 (SRCP1), that effectively prevents protein aggregation in cell culture and zebrafish models of Huntington’s disease. Here we tested whether this benefit extends to aggregated proteins found in ALS. We used viral-mediated expression of SRCP1 in in vitro and in vivo models of ALS. We found that SRCP1 reduced insoluble SOD1 protein levels in HEK293T cells overexpressing either the A4V or G93R mutant SOD1. However, the reduction of insoluble protein was not observed in either mutant C9orf72 or SOD1 ALS iPSC-derived motor neurons infected with a lentivirus expressing SRCP1. SOD1-G93A ALS mice injected with AAV-SRCP1 showed a small but significant reduction in insoluble and soluble SOD1 in both the brain and spinal cord, but SRCP1 expression did not improve mouse survival. These data indicate that SRCP1 likely reduces insoluble protein burden in a protein and/or context-dependent manner indicating a need for additional insight into SRCP1 function and therapeutic potential.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2452-2458 ◽  
Author(s):  
Hiromichi Matsushita ◽  
Masahiro Kizaki ◽  
Hiroyuki Kobayashi ◽  
Hironori Ueno ◽  
Akihiro Muto ◽  
...  

Complete remission is achieved in a high proportion of patients with acute promyelocytic leukemia (APL) after all-trans retinoic acid (RA) treatment, but most patients relapse and develop RA-resistant APL. We have previously reported that both RA-resistant HL-60 (HL-60R) and APL cells express P-glycoprotein and MDR1 transcripts; and these cells differentiate to mature granulocytes after culture with RA and P-glycoprotein antagonist. Ribozymes have been shown to be able to intercept a target RNA by catalytic activity. To address the role of MDR1 in overcoming RA-resistance in APL cells, we investigated the biologic effects of ribozymes against the MDR1 transcript in HL-60R cells. These ribozymes efficiently cleaved MDR1 mRNA at a specific site in vitro. The 196 MDR1 ribozyme was cloned into an expression vector, and stably transfected (HL-60R/196Rz) cells were obtained. Expression of MDR1 transcripts was decreased in HL-60R/196Rz cells compared with parental HL-60R and empty vector-transfected (HL-60R/neo) cells. Interestingly, RA inhibited cellular proliferation and induced differentiation of HL-60R/196Rz cells in a dose-dependent manner, suggesting reversal of drug resistance in HL-60R cells by the MDR1 ribozyme. These data are direct evidence that P-glycoprotein/MDR1 is responsible in part for acquired resistance to RA in myeloid leukemic cells. The MDR1 ribozyme may be a useful tool for investigating the biology of retinoid resistance and may have therapeutic potential for patients with RA-resistant APL.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi96-vi97
Author(s):  
Max Schaettler ◽  
Gavin Dunn

Abstract Adoptive cellular therapy in the form of CAR T cells or TCR engineered T cells has emerged as a novel approach in the treatment of both solid and hematologic malignancies. Neoantigens generated by tumor somatic mutations represent potentially attractive therapeutic targets in this context owing to their tumor-specific expression and circumvention of immunological tolerance. However, existing cell therapy systems generally target self-proteins or virally overexpressed antigens that fail to recapitulate the features of endogenous tumor neoantigens. Thus, there exists a need for a model in which tumor-specific neoantigens can be targeted via adoptive cellular therapy. Prior work from our lab identified the Imp3D81N mutation (mImp3) within GL261 as a neoantigen recognized by CD8 T cells in both intracranial tumors and draining cervical lymph nodes. To generate a system for targeting this neoantigen, we isolated and cloned mImp3-specific TCRs through a single-cell sort followed by a nested multiplexed PCR reaction. The specificity and functionality of these isolated TCRs was determined through introduction into a T cell hybridoma, identifying a top candidate based upon a high degree of cytokine production and specificity for the mutant epitope. A TCR transgenic mouse was then generated in which more than 90% of all T cells were CD8 T cells bearing this mImp3-specific TCR. T cells isolated from this mouse display specificity for the mImp3 peptide and display in vitro reactivity to GL261 and other cell lines in a mImp3-dependent manner. Therefore, this model represents the first TCR transgenic targeting a brain tumor neoantigen, opening the door for further investigation into cell therapy against this class of antigens.


Blood ◽  
2011 ◽  
Vol 118 (18) ◽  
pp. 5050-5059 ◽  
Author(s):  
Alexander Scholz ◽  
Victoria Lang ◽  
Reinhard Henschler ◽  
Marcus Czabanka ◽  
Peter Vajkoczy ◽  
...  

Abstract In human inflammatory diseases, we identified endothelial angiopoietin-2 (Ang-2) expression to be strongly associated with inflammations mediated by myeloid cells but not lymphocytes. To identify the underlying mechanism, we made use of a transgenic mouse model with inducible endothelial cell-specific expression of Ang-2. In this model, in the absence of inflammatory stimuli, long-term expression of Ang-2 led to a time-dependent accumulation of myeloid cells in numerous organs, suggesting that Ang-2 is sufficient to recruit myeloid cells. In models of acute inflammation, such as delayed-type hypersensitivity and peritonitis, Ang-2 transgenic animals showed an increased responsiveness. Intravital fluorescence video microscopy revealed augmented cell adhesion as an underlying event. Consequently, we demonstrated that Ang-2 is able to induce strong monocyte adhesion under shear in vitro, which could be blocked by antibodies to β2-integrin. Taken together, our results describe Ang-2 as a novel, endothelial-derived regulator of myeloid cell infiltration that modulates β2-integrin–mediated adhesion in a paracrine manner.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Myeong A Choi ◽  
Sun You Park ◽  
Hye Yun Chae ◽  
Yoojin Song ◽  
Chiranjeev Sharma ◽  
...  

Abstract To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 μM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 μM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Na Dong ◽  
Zhong Dong ◽  
Ying Chen ◽  
Xiaosu Gu

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Crocetin, derived from saffron, exerts multiple pharmacological properties, such as anti-inflammatory, antioxidant, antifatigue, and anticancer effects. However, the effect of crocetin on PD remains unclear. In this study, we designed experiments to investigate the effect of crocetin against MPTP-induced PD models and the underlying mechanisms. Our results showed that crocetin treatment attenuates MPTP-induced motor deficits and protects dopaminergic neurons. Both in vivo and in vitro experiments demonstrated that crocetin treatment decreased the expression of inflammatory associated genes and inflammatory cytokines. Furthermore, crocetin treatment protected mitochondrial functions against MPP+ induced damage by regulating the mPTP (mitochondrial permeability transition pore) viability in the interaction of ANT (adenine nucleotide translocase) and Cyp D (Cyclophilin D) dependent manner. Therefore, our results demonstrate that crocetin has therapeutic potential in Parkinson’s disease.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 411-411
Author(s):  
Christophe Lechauve ◽  
Julia Keith ◽  
Eugene Khandros ◽  
Stephanie Fowler ◽  
Kalin Mayberry ◽  
...  

Abstract β-Thalassemia is a common, frequently debilitating, inherited anemia caused by HBB gene mutations that reduce or eliminate the expression of the β-globin subunit of adult hemoglobin (HbA, α2β2). Consequently, excess free α-globin forms toxic precipitates in red blood cells (RBCs) and their precursors, leading to ineffective erythropoiesis and hemolytic anemia. Previously, we showed that free α-globin is eliminated by protein quality-control pathways, including the ubiquitin-proteasome system and autophagy (Khandros et al., Blood 2012;119:5265). In β-thalassemic mice, disruption of the Unc-51-like autophagy activating kinase gene (Ulk1) increased α-globin precipitates and worsened the pathologies of β-thalassemia. Treatment of β-thalassemic mice with rapamycin to inhibit mTOR (an ULK1 inhibitor) reduced α-globin precipitates, lessened ineffective erythropoiesis, and increased the lifespan of circulating RBCs in an Ulk1-dependent fashion. To investigate the therapeutic potential of rapamycin in human β-thalassemia, we treated erythroid precursors generated by in vitro differentiation of patient-derived CD34+ hematopoietic stem and progenitor cells. Reverse-phase high-performance liquid chromatography (HPLC) analysis of hemoglobinized erythroblasts generated from transfusion-dependent (TD, n = 5) or non-transfusion-dependent (NTD, n = 5) β-thalassemia patients revealed α-chain excesses (α-chain/β-like [β + γ + δ] chain) of approximately 40% and 15%, respectively (compared to 7 normal donors; P < 0.001). Rapamycin (10µM or 20µM) or the proteasome inhibitor MG132 (2.5µM) was added to day 13 cultures, which contained mid- to late-stage erythroblasts, and α-globin accumulation was determined by HPLC 2 days later. As expected, proteasome inhibition by MG132 raised free α-globin levels in thalassemic erythroblasts (P < 0.01) and induced cell death (P < 0.01). In contrast, rapamycin reduced free α-globin in a dose-dependent manner by 40% and 85% in TD (P < 0.0001) and NTD β-thalassemia (P < 0.001), respectively, but had no effect on erythroblasts derived from normal CD34+ cells (figure). We also observed decreases in the accumulation of autophagic markers, such as SQSTM1/p62 protein, by Western blotting. We observed no negative effects of rapamycin on the survival of patient-derived erythroblasts. Also of note, under our experimental conditions, rapamycin treatment of erythroblasts did not induce fetal hemoglobin production, as has been previously reported, thereby excluding this potential mechanism for reducing globin chain imbalances. Overall, rapamycin treatment significantly reduced the accumulation of free α-globin in TD β-thalassemia and almost fully corrected the imbalance in NTD β-thalassemia cells. Our findings identify a new drug-regulatable pathway for ameliorating β-thalassemia. Rapamycin is approved and well studied, and it has a generally manageable toxicity profile. Moreover, there are additional pharmacologic approaches to activating ULK via mTOR inhibition or other pathways. These approaches may lead to effective drug therapies for β-thalassemia, particularly NTD or intermittently TD forms of the disease. Disclosures Cappellini: Celgene Corporation: Membership on an entity's Board of Directors or advisory committees; Vifor: Membership on an entity's Board of Directors or advisory committees; Sanofi/Genzyme: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document