scholarly journals A systematic evaluation of data processing and problem formulation of CRISPR off-target site prediction

2021 ◽  
Author(s):  
Ofir Yaish ◽  
Maor Asif ◽  
Yaron Orenstein

AbstractCRISPR/Cas9 system is widely used in a broad range of gene-editing applications. While this gene-editing technique is quite accurate in the target region, there may be many unplanned off-target edited sites. Consequently, a plethora of computational methods have been developed to predict off-target cleavage sites given a guide RNA and a reference genome. However, these methods are based on small-scale datasets (only tens to hundreds of off-target sites) produced by experimental techniques to detect off-target sites with a low signal-to-noise ratio. Recently, CHANGE-seq, a new in vitro experimental technique to detect off-target sites, was used to produce a dataset of unprecedented scale and quality (more than 200,000 off-target sites over 110 guide RNAs). In addition, the same study included GUIDE-seq experiments for 58 of the guide RNAs to produce in vivo measurements of off-target sites. Here, we fill the gap in previous computational methods by utilizing these data to perform a systematic evaluation of data processing and formulation of the CRISPR off-target site prediction problem. Our evaluations show that data transformation as a pre-processing phase is critical prior to model training. Moreover, we demonstrate the improvement gained by adding potential inactive off-target sites to the training datasets. Furthermore, our results point to the importance of adding the number of mismatches between the guide RNA and the off-target site as a feature. Finally, we present predictive off-target in vivo models based on transfer learning from in vitro. Our conclusions will be instrumental to any future development of an off-target predictor based on high-throughput datasets.

2021 ◽  
Author(s):  
Rammyani Bagchi ◽  
Rachel Tinker-Kulberg ◽  
Tinku Supakar ◽  
Sydney Chamberlain ◽  
Ayalew Ligaba-Osena ◽  
...  

ABSTRACTCRISPR biotechnologies, where CRISPR effectors recognize and degrade specific nucleic acid targets that are complementary to their guide RNA (gRNA) cofactors, have been primarily used as a tool for precision gene editing1 but possess an emerging potential for novel antiviral diagnostics, prophylactics, and therapeutics.2–5 In gene editing applications, significant efforts are made to limit the natural tolerance of CRISPR effectors for nucleic acids with imperfect complementarity to their gRNAs in order to prevent degradation and mutation at unintended or “off-target” sites; here we exploit those tolerances to engineer gRNAs that are optimized to promote activity at multiple viral target sites, simultaneously, given that multiplexed targeting is a critical tactic for improving viral detection sensitivity,3 expanding recognition of clinical strain variants,6 and suppressing viral mutagenic escape from CRISPR antivirals.7 We demonstrate in vitro and in higher plants that single “polyvalent” gRNAs (pgRNAs) in complex with CRISPR effectors Cas9 or Cas13 can effectively degrade pairs of viral targets with significant sequence divergence (up to 40% nucleotide differences) that are prevalent in viral genomes. We find that CRISPR antivirals using pgRNAs can robustly suppress the propagation of plant RNA viruses, in vivo, better than those with a “monovalent” gRNA counterpart. These results represent a powerful new approach to gRNA design for antiviral applications that can be readily incorporated into current viral detection and therapeutic strategies, and highlight the need for specific approaches and tools that can address the differential requirements of precision gene editing vs. CRISPR antiviral applications in order to mature these promising biotechnologies.


2015 ◽  
Author(s):  
Serif Senturk ◽  
Nitin H Shirole ◽  
Dawid D. Nowak ◽  
Vincenzo Corbo ◽  
Alexander Vaughan ◽  
...  

The Cas9/CRISPR system is a powerful tool for studying gene function. Here we describe a method that allows temporal control of Cas9/CRISPER activity based on conditional CAS9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 enables conditional rapid and reversible Cas9 expression in vitro and efficient gene-editing in the presence of a guide RNA. Further, we show that this strategy can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest, without the latter being co-modulated. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic identification of essential genes and the interrogation of genes functional interactions.


Author(s):  
Ida Höijer ◽  
Josefin Johansson ◽  
Sanna Gudmundsson ◽  
Chen-Shan Chin ◽  
Ignas Bunikis ◽  
...  

AbstractA much-debated concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target sites and activity is challenging. Here we present SMRT-OTS and Nano-OTS, two amplification-free long-read sequencing protocols for detection of gRNA driven digestion of genomic DNA by Cas9. The methods were assessed using the human cell line HEK293, which was first re-sequenced at 18x coverage using highly accurate (HiFi) SMRT reads to get a detailed view of all on- and off-target binding regions. We then applied SMRT-OTS and Nano-OTS to investigate the specificity of three different gRNAs, resulting in a set of 55 high-confidence gRNA binding sites identified by both methods. Twenty-five (45%) of these sites were not reported by off-target prediction software, either because they contained four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. We further discovered that a heterozygous SNP can cause allele-specific gRNA binding. Finally, by performing a de novo genome assembly of the HiFi reads, we were able to re-discover 98.7% of the gRNA binding sites without any prior information about the human reference genome. This suggests that CRISPR-Cas9 off-target sites can be efficiently mapped also in organisms where the genome sequence is unknown. In conclusion, the amplification-free sequencing protocols revealed many gRNA binding sites in vitro that would be difficult to predict based on gRNA sequence alignment to a reference. Nevertheless, it is still unknown whether in vivo off-target editing would occur at these sites.


2021 ◽  
Author(s):  
Ida Höijer ◽  
Anastasia Emmanouilidou ◽  
Rebecka Östlund ◽  
Robin van Schendel ◽  
Selma Bozorgpana ◽  
...  

To investigate the extent and distribution of unintended mutations induced by CRISPR-Cas9 in vivo, we edited the genome of fertilized zebrafish eggs and investigated DNA from >1100 larvae, juvenile and adult fish in the F0 and F1 generations. Four guide RNAs (gRNAs) were used, selected from 23 gRNAs with high on-target efficiency in vivo in previous functional experiments. CRISPR-Cas9 outcomes were analyzed by long-read sequencing of on-target sites and off-target sites detected in vitro. In founder larvae, on-target editing of the four gRNAs was 93-97% efficient, and three sites across two gRNAs were identified with in vivo off-target editing. Seven percent of the CRISPR-Cas9 editing outcomes correspond to structural variants (SVs), i.e., insertions and deletions ≥50 bp. The adult founder fish displayed a mosaic pattern of editing events in somatic and germ cells. The F1 generation contained high levels of genome editing, with all alleles of 46 examined F1 juvenile fish affected by on-target mutations, including four cases of SVs. In addition, 26% of the juvenile F1 fish (n=12) carried off-target mutations. These CRISPR-induced off-target mutations in F1 fish were successfully validated in pooled larvae from the same founder parents. In conclusion, we demonstrate that large SVs and off-target mutations can be introduced in vivo and passed through the germline to the F1 generation. The results have important consequences for the use of CRISPR-Cas9 in clinical applications, where pre-testing for off-target activity and SVs on patient material is advisable to reduce the risk of unanticipated effects with potentially large implications.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav7199 ◽  
Author(s):  
Yongchun Pan ◽  
Jingjing Yang ◽  
Xiaowei Luan ◽  
Xinli Liu ◽  
Xueqing Li ◽  
...  

As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.


2020 ◽  
Vol 117 (37) ◽  
pp. 22805-22814 ◽  
Author(s):  
Rebeca Carballar-Lejarazú ◽  
Christian Ogaugwu ◽  
Taylor Tushar ◽  
Adam Kelsey ◽  
Thai Binh Pham ◽  
...  

A Cas9/guide RNA-based gene drive strain, AgNosCd-1, was developed to deliver antiparasite effector molecules to the malaria vector mosquito, Anopheles gambiae. The drive system targets the cardinal gene ortholog producing a red-eye phenotype. Drive can achieve 98 to 100% in both sexes and full introduction was observed in small cage trials within 6 to 10 generations following a single release of gene-drive males. No genetic load resulting from the integrated transgenes impaired drive performance in the trials. Potential drive-resistant target-site alleles arise at a frequency <0.1, and five of the most prevalent polymorphisms in the guide RNA target site in collections of colonized and wild-derived African mosquitoes do not prevent cleavage in vitro by the Cas9/guide RNA complex. Only one predicted off-target site is cleavable in vitro, with negligible deletions observed in vivo. AgNosCd-1 meets key performance criteria of a target product profile and can be a valuable component of a field-ready strain for mosquito population modification to control malaria transmission.


2020 ◽  
Author(s):  
Will B Cody ◽  
Herman B. Scholthof

The current CRISPR/Cas9 gene editing dogma for single guide RNAs (sgRNA) delivery is based on the premise that 5′ and 3′ nucleotide overhangs negate Cas9/sgRNA catalytic activity in vivo. This has led to engineering strategies designed to either avoid or remove extraneous nucleotides on the 5′ and 3′ termini. Previously, we used a Tobacco mosaic virus viral vector to express both GFP and a sgRNA from a single virus-derived mRNA in Nicotiana benthamiana. This vector yielded high levels of GFP and catalytically active sgRNAs. Here, in an effort to understand the biochemical interactions of this result, we used in vitro assays to demonstrate that nucleotide overhangs 5′, but not 3′, proximal to the sgRNA do in fact inactivate Cas9 catalytic activity at the specified target site. Next we showed that in planta sgRNAs bound to Cas9 are devoid of the expected 5′ overhangs transcribed by the virus. Furthermore, when a plant nuclear promoter was used for expression of the GFP-sgRNA fusion transcript it also produced indels when delivered with Cas9. These results reveal that 5′ "auto-processing" of progenitor sgRNAs occurs natively in plants. Towards a possible mechanism for the perceived "auto-processing", we found, using in vitro generated RNAs and those isolated from plants, that the 5′ to 3′ exoribonuclease XRN1 can degrade elongated progenitor sgRNAs whereas the mature sgRNA end-products are resistant. Comparisons with other studies suggest that sgRNA "auto-processing" may be a phenomenon not unique to plants, but other eukaryotes as well.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hyeran Kim ◽  
Jisun Choi ◽  
Kang-Hee Won

Abstract Background DNA-free, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) ribonucleoprotein (RNP)-based genome editing is a simple, convincing, and promising tool for precision crop breeding. The efficacy of designed CRISPR-based genome editing tools is a critical prerequisite for successful precision gene editing in crops. Results This study demonstrates that soil-grown leaf- or callus-derived pepper protoplasts are a useful system for screening of efficient guide RNAs for CRISPR/Cas9 or CRISPR/Cas12a (Cpf1). CRISPR/Cas9 or Cpf1 were delivered as CRISPR/RNP complexes of purified endonucleases mixed with the designed single guide RNA, which can edit the target gene, CaMLO2 in two pepper cultivars with whole genome sequenced, Capsicum annuum ‘CM334’ and C. annuum ‘Dempsey’. The designed guide RNAs (sgRNAs for Cas9 or crRNAs for Cpf1) are conserved for CaMLO2 in both CM334 and Dempsey and cleave CaMLO2 in vitro. CRISPR/Cas9- or /Cpf1-RNP complexes were transfected into purely isolated protoplasts of the hot pepper CM334 and sweet pepper Dempsey by PEG-mediated delivery. Targeted deep sequencing analysis indicated that the targeted CaMLO2 gene was differentially edited in both cultivars, depending on the applied CRISPR/RNPs. Conclusions Pepper protoplast-based CRISPR guide-RNA selection is a robust method to check the efficacy of designed CRISPR tools and is a prerequisite for regenerating edited plants, which is a critical time-limiting procedure. The rapid and convincing selection of guide RNA against a target genome reduces the laborious efforts for tissue culture and facilitates effective gene editing for pepper improvement.


2011 ◽  
Vol 286 (12) ◽  
pp. 10329-10340 ◽  
Author(s):  
Sara L. Zimmer ◽  
Sarah M. McEvoy ◽  
Jun Li ◽  
Jun Qu ◽  
Laurie K. Read

RNA turnover and RNA editing are essential for regulation of mitochondrial gene expression in Trypanosoma brucei. RNA turnover is controlled in part by RNA 3′ adenylation and uridylation status, with trans-acting factors also impacting RNA homeostasis. However, little is known about the mitochondrial degradation machinery or its regulation in T. brucei. We have identified a mitochondrial exoribonuclease, TbRND, whose expression is highly up-regulated in the insect proliferative stage of the parasite. TbRND shares sequence similarity with RNase D family enzymes but differs from all reported members of this family in possessing a CCHC zinc finger domain. In vitro, TbRND exhibits 3′ to 5′ exoribonuclease activity, with specificity toward uridine homopolymers, including the 3′ oligo(U) tails of guide RNAs (gRNAs) that provide the sequence information for RNA editing. Several lines of evidence generated from RNAi-mediated knockdown and overexpression cell lines indicate that TbRND functions in gRNA metabolism in vivo. First, TbRND depletion results in gRNA tails extended by 2–3 nucleotides on average. Second, overexpression of wild type but not catalytically inactive TbRND results in a substantial decrease in the total gRNA population and a consequent inhibition of RNA editing. The observed effects on the gRNA population are specific as rRNAs, which are also 3′-uridylated, are unaffected by TbRND depletion or overexpression. Finally, we show that gRNA binding proteins co-purify with TbRND. In summary, TbRND is a novel 3′ to 5′ exoribonuclease that appears to have evolved a function highly specific to the mitochondrion of trypanosomes.


2020 ◽  
Vol 20 ◽  
Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Genome editing is an addition, deletion, or replacement of a gene for wiping out or initiating explicit and preferred characters in the genome. Utilizing gene editing tools like CRISPR-Cas9 technology could be accomplished either by gene-based methodology or protein based technology that has been under scrutiny for protracted time wherein physical techniques, viral and non-viral strategies have been utilized together. Transplanting ex vivo CRISPR edited cells empowers screening of single guide RNAs with high-throughput and CRISPR based screening in organoids transplantation to validate cancer cells including colorectal carcinoma in various phases of its development and treatment. CRISPR knockout screens have recognized genes driving an interest in the colon cancer develop hallmarks, outstandingly for the disclosure of drug resistance mechanism in some cancer cell lines with single guide RNA. A benefit of this approach is to deal with genomic screening of CRISPR knockout, disrupts gene expression, rather than the partial knockdown which are frequently accomplished with RNA interference and CRISPR-Cas technology. Due to its proficient editing of the target gene, along with CRISPR/Cas system, this technique is used in the treatment of diverse types of cancer. In recent time research showed that CRISPR/Cas gene editing tool potentially reformed expression of long non-coding RNA in colorectal carcinoma. CRISPR/Cas9 technology will positively fuel the advancement of further in vivo gene editing clinical trials in colon cancer for forthcoming days and will have an immense impact in molecular medicine.


Sign in / Sign up

Export Citation Format

Share Document