scholarly journals Polyvalent Guide RNAs for CRISPR Antivirals

2021 ◽  
Author(s):  
Rammyani Bagchi ◽  
Rachel Tinker-Kulberg ◽  
Tinku Supakar ◽  
Sydney Chamberlain ◽  
Ayalew Ligaba-Osena ◽  
...  

ABSTRACTCRISPR biotechnologies, where CRISPR effectors recognize and degrade specific nucleic acid targets that are complementary to their guide RNA (gRNA) cofactors, have been primarily used as a tool for precision gene editing1 but possess an emerging potential for novel antiviral diagnostics, prophylactics, and therapeutics.2–5 In gene editing applications, significant efforts are made to limit the natural tolerance of CRISPR effectors for nucleic acids with imperfect complementarity to their gRNAs in order to prevent degradation and mutation at unintended or “off-target” sites; here we exploit those tolerances to engineer gRNAs that are optimized to promote activity at multiple viral target sites, simultaneously, given that multiplexed targeting is a critical tactic for improving viral detection sensitivity,3 expanding recognition of clinical strain variants,6 and suppressing viral mutagenic escape from CRISPR antivirals.7 We demonstrate in vitro and in higher plants that single “polyvalent” gRNAs (pgRNAs) in complex with CRISPR effectors Cas9 or Cas13 can effectively degrade pairs of viral targets with significant sequence divergence (up to 40% nucleotide differences) that are prevalent in viral genomes. We find that CRISPR antivirals using pgRNAs can robustly suppress the propagation of plant RNA viruses, in vivo, better than those with a “monovalent” gRNA counterpart. These results represent a powerful new approach to gRNA design for antiviral applications that can be readily incorporated into current viral detection and therapeutic strategies, and highlight the need for specific approaches and tools that can address the differential requirements of precision gene editing vs. CRISPR antiviral applications in order to mature these promising biotechnologies.

2021 ◽  
Author(s):  
Ofir Yaish ◽  
Maor Asif ◽  
Yaron Orenstein

AbstractCRISPR/Cas9 system is widely used in a broad range of gene-editing applications. While this gene-editing technique is quite accurate in the target region, there may be many unplanned off-target edited sites. Consequently, a plethora of computational methods have been developed to predict off-target cleavage sites given a guide RNA and a reference genome. However, these methods are based on small-scale datasets (only tens to hundreds of off-target sites) produced by experimental techniques to detect off-target sites with a low signal-to-noise ratio. Recently, CHANGE-seq, a new in vitro experimental technique to detect off-target sites, was used to produce a dataset of unprecedented scale and quality (more than 200,000 off-target sites over 110 guide RNAs). In addition, the same study included GUIDE-seq experiments for 58 of the guide RNAs to produce in vivo measurements of off-target sites. Here, we fill the gap in previous computational methods by utilizing these data to perform a systematic evaluation of data processing and formulation of the CRISPR off-target site prediction problem. Our evaluations show that data transformation as a pre-processing phase is critical prior to model training. Moreover, we demonstrate the improvement gained by adding potential inactive off-target sites to the training datasets. Furthermore, our results point to the importance of adding the number of mismatches between the guide RNA and the off-target site as a feature. Finally, we present predictive off-target in vivo models based on transfer learning from in vitro. Our conclusions will be instrumental to any future development of an off-target predictor based on high-throughput datasets.


2015 ◽  
Author(s):  
Serif Senturk ◽  
Nitin H Shirole ◽  
Dawid D. Nowak ◽  
Vincenzo Corbo ◽  
Alexander Vaughan ◽  
...  

The Cas9/CRISPR system is a powerful tool for studying gene function. Here we describe a method that allows temporal control of Cas9/CRISPER activity based on conditional CAS9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 enables conditional rapid and reversible Cas9 expression in vitro and efficient gene-editing in the presence of a guide RNA. Further, we show that this strategy can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest, without the latter being co-modulated. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic identification of essential genes and the interrogation of genes functional interactions.


Author(s):  
Ida Höijer ◽  
Josefin Johansson ◽  
Sanna Gudmundsson ◽  
Chen-Shan Chin ◽  
Ignas Bunikis ◽  
...  

AbstractA much-debated concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target sites and activity is challenging. Here we present SMRT-OTS and Nano-OTS, two amplification-free long-read sequencing protocols for detection of gRNA driven digestion of genomic DNA by Cas9. The methods were assessed using the human cell line HEK293, which was first re-sequenced at 18x coverage using highly accurate (HiFi) SMRT reads to get a detailed view of all on- and off-target binding regions. We then applied SMRT-OTS and Nano-OTS to investigate the specificity of three different gRNAs, resulting in a set of 55 high-confidence gRNA binding sites identified by both methods. Twenty-five (45%) of these sites were not reported by off-target prediction software, either because they contained four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. We further discovered that a heterozygous SNP can cause allele-specific gRNA binding. Finally, by performing a de novo genome assembly of the HiFi reads, we were able to re-discover 98.7% of the gRNA binding sites without any prior information about the human reference genome. This suggests that CRISPR-Cas9 off-target sites can be efficiently mapped also in organisms where the genome sequence is unknown. In conclusion, the amplification-free sequencing protocols revealed many gRNA binding sites in vitro that would be difficult to predict based on gRNA sequence alignment to a reference. Nevertheless, it is still unknown whether in vivo off-target editing would occur at these sites.


2019 ◽  
Vol 5 (4) ◽  
pp. eaav7199 ◽  
Author(s):  
Yongchun Pan ◽  
Jingjing Yang ◽  
Xiaowei Luan ◽  
Xinli Liu ◽  
Xueqing Li ◽  
...  

As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2003 ◽  
Vol 23 (11) ◽  
pp. 4000-4012 ◽  
Author(s):  
Ludovic Delage ◽  
André Dietrich ◽  
Anne Cosset ◽  
Laurence Maréchal-Drouard

ABSTRACT Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNAAla, tRNAPhe, and tRNAMet-e with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNAAla than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNAAla is naturally imported into potato mitochondria whereas tRNAPhe and tRNAMet-e are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.


Planta Medica ◽  
2018 ◽  
Vol 85 (04) ◽  
pp. 312-334 ◽  
Author(s):  
Fatai Balogun ◽  
Anofi Ashafa

AbstractSouth Africa contains 9% of the worldʼs higher plants, and despite its rich biodiversity, it has one of the highest prevalence of hypertension in Africa. This review provides information on medicinal plants embraced in South Africa for hypertension management, with the aim of reporting pharmacological information on the indigenous use of these plants as antihypertensives. This review not only focuses on the activity of antihypertensive medicinal plants but also reports some of its phytochemical constituents and other ethnopharmacological and therapeutic properties. Information obtained from scientific and or unpublished databases such as Science Direct, PubMed, SciFinder, JSTOR, Google Scholar, Web of Science, and various books revealed 117 documented antihypertensive plant species from 50 families. Interestingly, Asteraceae topped the list with 16 species, followed by Fabaceae with 8 species; however, only 25% of all plant species have demonstrated antihypertensive effects originating from both in vitro and in vivo studies, lending credence to their folkloric use. Only 11 plant species reportedly possess antihypertensive properties in animal models, with very few species subjected to analytical processes to reveal the identity of their bioactive antihypertensive compounds. In this review, we hope to encourage researchers and global research institutions (universities, agricultural research councils, and medical research councils), particularly those showing an interest in natural products, for the need for concerted efforts to undertake more studies aimed at revealing the untapped potential of these plants. These studies are very important for the development of new pharmaceuticals of natural origin useful for the management of hypertension.


1994 ◽  
Vol 72 (1) ◽  
pp. 188-192 ◽  
Author(s):  
Kazuki Saito ◽  
Reiko Kanda ◽  
Makoto Kurosawa ◽  
Isamu Murakoshi

Cysteine synthase (EC 4.2.99.8) in higher plants is responsible for biosynthesis of not only cysteine but also some nonprotein amino acids such as β-(pyrazol-1-yl)-L-alanine. The cDNA of a cysteine synthase from spinach (Spinacia oleracea) was inserted into pET8c (=pET3d) under the transcriptional control of strong T7 promoter to yield an overexpression vector pCEK1. The amount of the exogenous cysteine synthase was increased up to 40% of the total soluble protein of Escherichia coli transformed with pCEK1. β-(Pyrazol-1-yl)-L-alanine, a specific metabolite in plants of the Cucurbitaceae, was biosynthesized by overexpressed cysteine synthase from pyrazole in the presence of O-acetyl-L-serine and serine, in vitro and in vivo, respectively. The present study provides the system for mechanistic investigation of biosynthesis of cysteine and biogenetically related β-substituted alanines at molecular genetic level.


2021 ◽  
Vol 9 ◽  
Author(s):  
Poh Kuan Wong ◽  
Fook Choe Cheah ◽  
Saiful Effendi Syafruddin ◽  
M. Aiman Mohtar ◽  
Norazrina Azmi ◽  
...  

Hereditary or developmental neurological disorders (HNDs or DNDs) affect the quality of life and contribute to the high mortality rates among neonates. Most HNDs are incurable, and the search for new and effective treatments is hampered by challenges peculiar to the human brain, which is guarded by the near-impervious blood-brain barrier. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), a gene-editing tool repurposed from bacterial defense systems against viruses, has been touted by some as a panacea for genetic diseases. CRISPR has expedited the research into HNDs, enabling the generation of in vitro and in vivo models to simulate the changes in human physiology caused by genetic variation. In this review, we describe the basic principles and workings of CRISPR and the modifications that have been made to broaden its applications. Then, we review important CRISPR-based studies that have opened new doors to the treatment of HNDs such as fragile X syndrome and Down syndrome. We also discuss how CRISPR can be used to generate research models to examine the effects of genetic variation and caffeine therapy on the developing brain. Several drawbacks of CRISPR may preclude its use at the clinics, particularly the vulnerability of neuronal cells to the adverse effect of gene editing, and the inefficiency of CRISPR delivery into the brain. In concluding the review, we offer some suggestions for enhancing the gene-editing efficacy of CRISPR and how it may be morphed into safe and effective therapy for HNDs and other brain disorders.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mark Austin Hanson ◽  
Anna Dostálová ◽  
Camilla Ceroni ◽  
Mickael Poidevin ◽  
Shu Kondo ◽  
...  

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


Sign in / Sign up

Export Citation Format

Share Document