scholarly journals Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform

2019 ◽  
Vol 5 (4) ◽  
pp. eaav7199 ◽  
Author(s):  
Yongchun Pan ◽  
Jingjing Yang ◽  
Xiaowei Luan ◽  
Xinli Liu ◽  
Xueqing Li ◽  
...  

As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.

2021 ◽  
Vol 9 (11) ◽  
pp. e003036
Author(s):  
Shunichi Taki ◽  
Kohei Matsuoka ◽  
Yuko Nishinaga ◽  
Kazuomi Takahashi ◽  
Hirotoshi Yasui ◽  
...  

BackgroundNear-infrared photoimmunotherapy (NIR-PIT) is a new modality for treating cancer, which uses antibody-photoabsorber (IRDye700DX) conjugates that specifically bind to target tumor cells. This conjugate is then photoactivated by NIR light, inducing rapid necrotic cell death. NIR-PIT needs a highly expressed targeting antigen on the cells because of its reliance on antibodies. However, using antibodies limits this useful technology to only those patients whose tumors express high levels of a specific antigen. Thus, to propose an alternative strategy, we modified this phototechnology to augment the anticancer immune system by targeting the almost low-expressed immune checkpoint molecules on tumor cells.MethodsWe used programmed death-ligand 1 (PD-L1), an immune checkpoint molecule, as the target for NIR-PIT. Although the expression of PD-L1 on tumor cells is usually low, PD-L1 is almost expressed on tumor cells. Intratumoral depletion with PD-L1-targeted NIR-PIT was tested in mouse syngeneic tumor models.ResultsAlthough PD-L1-targeted NIR-PIT showed limited effect on tumor cells in vitro, the therapy induced sufficient antitumor effects in vivo, which were thought to be mediated by the ‘photoimmuno’ effect and antitumor immunity augmentation. Moreover, PD-L1-targeted NIR-PIT induced antitumor effect on non-NIR light-irradiated tumors.ConclusionsLocal PD-L1-targeted NIR-PIT enhanced the antitumor immune reaction through a direct photonecrotic effect, thereby providing an alternative approach to targeted cancer immunotherapy and expanding the scope of cancer therapeutics.


Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2189-2207
Author(s):  
Yiming Yu ◽  
Li Zhang ◽  
Miao Wang ◽  
Zhe Yang ◽  
Leping Lin ◽  
...  

Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.


2015 ◽  
Author(s):  
Serif Senturk ◽  
Nitin H Shirole ◽  
Dawid D. Nowak ◽  
Vincenzo Corbo ◽  
Alexander Vaughan ◽  
...  

The Cas9/CRISPR system is a powerful tool for studying gene function. Here we describe a method that allows temporal control of Cas9/CRISPER activity based on conditional CAS9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 enables conditional rapid and reversible Cas9 expression in vitro and efficient gene-editing in the presence of a guide RNA. Further, we show that this strategy can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest, without the latter being co-modulated. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic identification of essential genes and the interrogation of genes functional interactions.


2021 ◽  
Author(s):  
Chenxi Li ◽  
Rui Liu ◽  
Yurong Song ◽  
Dongjie Zhu ◽  
Liuchunyang Yu ◽  
...  

Abstract Triptolide (TP) as a disease-modifying anti-rheumatic drug (DMARD) is effective on the treatment of rheumatoid arthritis (RA). To alleviate the toxicity and elevate therapeutic specificity, hyaluronic acid (HA) hydrogels load RGD-attached gold nanoshell containing TP are synthesized, which can be used for targeted photothermal-chemo therapy, and imaging of RA in vivo. The hydrogels system composed of thiol and tyramine modified HA conjugates has been applied artificial tissue models of cartilage for studying drug delivery and release properties. After the degradation of HA chains, heat together with drugs can be delivered to the inflammatory joints simultaneously due to the near-infrared resonance (NIR) irradiation of Au nanoshell. RA is a chronic inflamed disease, which is characterized by synovial inflammation of multiple joints, and can be penetrated with NIR light. These intra-articular administrated hybrid hydrogels combined with NIR irradiation can improve clinical arthritic conditions and inflamed joints in collagen-induced arthritis (CIA) mice, which just need a smaller dosage of TP with non-toxicity. Additionally, the TP-Au/HA hybrid hydrogels treatment reduced the invasion and migration of RA fibroblast-like synoviocytes (RA-FLSs) in vitro significantly, through reducing the phosphorylation of mTOR and p70S6K, its substrates, and confirmed that the mTOR pathway was inhibited.


2020 ◽  
Vol 6 (47) ◽  
pp. eabc9450 ◽  
Author(s):  
Daniel Rosenblum ◽  
Anna Gutkin ◽  
Ranit Kedmi ◽  
Srinivas Ramishetti ◽  
Nuphar Veiga ◽  
...  

Harnessing CRISPR-Cas9 technology for cancer therapeutics has been hampered by low editing efficiency in tumors and potential toxicity of existing delivery systems. Here, we describe a safe and efficient lipid nanoparticle (LNP) for the delivery of Cas9 mRNA and sgRNAs that use a novel amino-ionizable lipid. A single intracerebral injection of CRISPR-LNPs against PLK1 (sgPLK1-cLNPs) into aggressive orthotopic glioblastoma enabled up to ~70% gene editing in vivo, which caused tumor cell apoptosis, inhibited tumor growth by 50%, and improved survival by 30%. To reach disseminated tumors, cLNPs were also engineered for antibody-targeted delivery. Intraperitoneal injections of EGFR-targeted sgPLK1-cLNPs caused their selective uptake into disseminated ovarian tumors, enabled up to ~80% gene editing in vivo, inhibited tumor growth, and increased survival by 80%. The ability to disrupt gene expression in vivo in tumors opens new avenues for cancer treatment and research and potential applications for targeted gene editing of noncancerous tissues.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xunzhi Wu ◽  
Yongkuan Suo ◽  
Hui Shi ◽  
Ruiqi Liu ◽  
Fengxia Wu ◽  
...  

Abstract Photothermal therapy (PTT) using near-infrared (NIR) light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience. The current research on PTT usually uses lasers in the first NIR window (NIR-I; 700–900 nm) as irradiation source. However, the second NIR window (NIR-II; 1000–1700 nm) especially NIR-IIa window (1300–1400 nm) is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window. Hereby, we propose the use of laser excitation at 1275 nm, which is approved by Food and Drug Administration for physical therapy, as an attractive technique for PTT to balance of tissue absorption and scattering with water absorption. Specifically, CuS-PEG nanoparticles with similar absorption values at 1275 and 808 nm, a conventional NIR-I window for PTT, were synthesized as PTT agents and a comparison platform, to explore the potential of 1275 and 808 nm lasers for PTT, especially in deep-tissue settings. The results showed that 1275 nm laser was practicable in PTT. It exhibited much more desirable outcomes in cell ablation in vitro and deep-tissue antitumor capabilities in vivo compared to that of 808 nm laser. NIR-IIa laser illumination is superior to NIR-I laser for deep-tissue PTT, and shows high potential to improve the PTT outcome.


2021 ◽  
Author(s):  
Rammyani Bagchi ◽  
Rachel Tinker-Kulberg ◽  
Tinku Supakar ◽  
Sydney Chamberlain ◽  
Ayalew Ligaba-Osena ◽  
...  

ABSTRACTCRISPR biotechnologies, where CRISPR effectors recognize and degrade specific nucleic acid targets that are complementary to their guide RNA (gRNA) cofactors, have been primarily used as a tool for precision gene editing1 but possess an emerging potential for novel antiviral diagnostics, prophylactics, and therapeutics.2–5 In gene editing applications, significant efforts are made to limit the natural tolerance of CRISPR effectors for nucleic acids with imperfect complementarity to their gRNAs in order to prevent degradation and mutation at unintended or “off-target” sites; here we exploit those tolerances to engineer gRNAs that are optimized to promote activity at multiple viral target sites, simultaneously, given that multiplexed targeting is a critical tactic for improving viral detection sensitivity,3 expanding recognition of clinical strain variants,6 and suppressing viral mutagenic escape from CRISPR antivirals.7 We demonstrate in vitro and in higher plants that single “polyvalent” gRNAs (pgRNAs) in complex with CRISPR effectors Cas9 or Cas13 can effectively degrade pairs of viral targets with significant sequence divergence (up to 40% nucleotide differences) that are prevalent in viral genomes. We find that CRISPR antivirals using pgRNAs can robustly suppress the propagation of plant RNA viruses, in vivo, better than those with a “monovalent” gRNA counterpart. These results represent a powerful new approach to gRNA design for antiviral applications that can be readily incorporated into current viral detection and therapeutic strategies, and highlight the need for specific approaches and tools that can address the differential requirements of precision gene editing vs. CRISPR antiviral applications in order to mature these promising biotechnologies.


2016 ◽  
Vol 4 (35) ◽  
pp. 5938-5946 ◽  
Author(s):  
Huiting Bi ◽  
Yunlu Dai ◽  
Jiating Xu ◽  
Ruichan Lv ◽  
Fei He ◽  
...  

CuS–Pt(iv) nanoparticles exhibited high in vitro and in vivo anti-tumor efficiency, which was caused by the integrated Pt drug-induced chemotherapy and CuS nanoparticle-mediated photothermal therapy (PTT) upon irradiation with near infrared (NIR) light.


2021 ◽  
Author(s):  
Ofir Yaish ◽  
Maor Asif ◽  
Yaron Orenstein

AbstractCRISPR/Cas9 system is widely used in a broad range of gene-editing applications. While this gene-editing technique is quite accurate in the target region, there may be many unplanned off-target edited sites. Consequently, a plethora of computational methods have been developed to predict off-target cleavage sites given a guide RNA and a reference genome. However, these methods are based on small-scale datasets (only tens to hundreds of off-target sites) produced by experimental techniques to detect off-target sites with a low signal-to-noise ratio. Recently, CHANGE-seq, a new in vitro experimental technique to detect off-target sites, was used to produce a dataset of unprecedented scale and quality (more than 200,000 off-target sites over 110 guide RNAs). In addition, the same study included GUIDE-seq experiments for 58 of the guide RNAs to produce in vivo measurements of off-target sites. Here, we fill the gap in previous computational methods by utilizing these data to perform a systematic evaluation of data processing and formulation of the CRISPR off-target site prediction problem. Our evaluations show that data transformation as a pre-processing phase is critical prior to model training. Moreover, we demonstrate the improvement gained by adding potential inactive off-target sites to the training datasets. Furthermore, our results point to the importance of adding the number of mismatches between the guide RNA and the off-target site as a feature. Finally, we present predictive off-target in vivo models based on transfer learning from in vitro. Our conclusions will be instrumental to any future development of an off-target predictor based on high-throughput datasets.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1019 ◽  
Author(s):  
Yuko Nishinaga ◽  
Kazuhide Sato ◽  
Hirotoshi Yasui ◽  
Shunichi Taki ◽  
Kazuomi Takahashi ◽  
...  

Malignant pleural mesothelioma (MPM) has extremely limited treatment despite a poor prognosis. Moreover, molecular targeted therapy for MPM has not yet been implemented; thus, a new targeted therapy is highly desirable. Near-infrared photoimmunotherapy (NIR-PIT) is a recently developed cancer therapy that combines the specificity of antibodies for targeting tumors with toxicity induced by the photoabsorber after exposure to NIR-light. In this study, we developed a new phototherapy targeting podoplanin (PDPN) for MPM with the use of both NIR-PIT and an anti-PDPN antibody, NZ-1. An antibody–photosensitizer conjugate consisting of NZ-1 and phthalocyanine dye was synthesized. In vitro NIR-PIT-induced cytotoxicity was measured with both dead cell staining and luciferase activity on various MPM cell lines. In vivo NIR-PIT was examined in both the flank tumor and orthotopic mouse model with in vivo real-time imaging. In vitro NIR-PIT-induced cytotoxicity was NIR-light dose dependent. In vivo NIR-PIT led to significant reduction in both tumor volume and luciferase activity in a flank model (p < 0.05, NIR-PIT group versus NZ-1-IR700 group). The PDPN-targeted NIR-PIT resulted in a significant antitumor effect in an MPM orthotopic mouse model (p < 0.05, NIR-PIT group versus NZ-1-IR700 group). This study suggests that PDPN-targeted NIR-PIT could be a new promising treatment for MPM.


Sign in / Sign up

Export Citation Format

Share Document