scholarly journals Host phylogeny and ecological associations best explain Wolbachia host shifts in scale insects

2021 ◽  
Author(s):  
Ehsan Sanaei ◽  
Gregory F Albery ◽  
Yun Kit Yeoh ◽  
Yen-Po Lin ◽  
Lyn G Cook ◽  
...  

AbstractWolbachia are among the most prevalent and widespread endosymbiotic bacteria on earth. Wolbachia’ s success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch to new host species. Whilst much progress has been made in elucidating the phenotypes induced by Wolbachia, our understanding of Wolbachia host shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia’s routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well-suited to studying host shifts. Using Illumina pooled amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains, revealing that 32% of samples were multiply infected (with up to five distinct strains per species). We then fitted a Generalised Additive Mixed Model (GAMM) to our data to estimate the influence of factors such as the host phylogeny and the geographic distribution of each species on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps, beetles, and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.

2021 ◽  
Author(s):  
Joanne S. Griffin ◽  
Michael Gerth ◽  
Gregory D. D. Hurst

AbstractHeritable symbionts represent important components of host biology, both as antagonistic reproductive parasites and as beneficial protective partners. An important component of heritable microbes’ biology is their ability to establish in new host species, a process equivalent to a host shift for an infectiously transmitted parasite or pathogen. For a host shift to occur, the symbiont must be compatible with the host: it must not cause excess pathology, must have good vertical transmission, and possess a drive phenotype that enables spread. Classically, compatibility has been considered a declining function of genetic distance between novel and ancestral host species. Here we investigate the evolutionary lability of compatibility to heritable microbes by comparing the capacity for a symbiont to establish in two novel host species equally related to the ancestral host. Compatibility of the protective Spiroplasma from D. hydei with D. simulans and D. melanogaster was tested. The Spiroplasma had contrasting compatibility in these two host species. The transinfection showed pathology and low vertical transmission in D. melanogaster but was asymptomatic and transmitted with high efficiency in D. simulans. These results were not affected by the presence/absence of Wolbachia in either of the two species. The pattern of protection was not congruent with that for pathology/transmission, with protection being weaker in the D. simulans, the host in which Spiroplasma was asymptomatic and transmitted well. Further work indicated pathological interactions occurred in D. sechellia and D. yakuba, indicating that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasises first the rapidity with which host-symbiont compatibility evolves despite compatibility itself not being subject to direct selection, and second the independence of the different components of compatibility (pathology, transmission, protection). This requirement to fit three different independently evolving aspects of compatibility, if commonly observed, is likely to be a major feature limiting the rate of host shifts. Moving forward, the variation between sibling species pairs observed above provides an opportunity to identify the mechanisms behind variable compatibility between closely related host species, which will drive hypotheses as to the evolutionary drivers of compatibility variation.


2020 ◽  
Author(s):  
Nardus Mollentze ◽  
Daniel G. Streicker ◽  
Pablo R. Murcia ◽  
Katie Hampson ◽  
Roman Biek

AbstractWhether a pathogen entering a new host species results in a single infection or in onward transmission, and potentially an outbreak, depends upon the progression of infection in the index case. Although index infections are rarely observable in nature, experimental inoculations of pathogens into novel host species have a long history in biomedical research. This provides a rich and largely unexploited data source for meta-analyses to identify the host and pathogen determinants of variability in infection outcomes. Here, we analysed the progressions of 514 experimental cross-species inoculations of rabies virus, a widespread zoonotic pathogen which in nature exhibits both dead end infections and varying levels of sustained transmission in novel hosts. Inoculations originating from bats rather than carnivores, and from warmer to cooler-bodied species caused infections with shorter incubation periods that were associated with diminished virus excretion. Inoculations between distantly related hosts tended to result in shorter clinical disease periods, which will also impede transmission. All effects were modulated by infection dose and together suggest that increased virulence as host species become more dissimilar is the limiting factor preventing onward transmission. These results explain observed constraints on rabies virus host shifts, allow us to evaluate the risk of novel reservoirs establishing, and give mechanistic insights into why host shifts are less likely between genetically distant species. More generally, our study highlights meta-analyses of experimental infections as a tractable approach to quantify the complex interactions between virus, reservoir, and novel host that shape the outcome of cross-species transmission.Significance statementEmerging disease epidemics often result from a pathogen establishing transmission in a novel host species. However, most cross-species transmissions fail to establish in the newly infected species for reasons that remain poorly understood. Examining cross-species inoculations involving rabies, a widespread viral zoonosis, we show that mismatches in virulence, which are predictable from host and viral factors, make sustained transmission in the novel host less likely. In particular, disease progression was accelerated and virus excretion decreased when the reservoir and novel host were physiologically or genetically more dissimilar. These mechanistic insights help to explain and predict host shift events and highlight meta-analyses of existing experimental inoculation data as a powerful and generalisable approach for understanding the dynamics of index infections in novel species.


Zootaxa ◽  
2021 ◽  
Vol 5052 (2) ◽  
pp. 1-40
Author(s):  
GILLIAN W. WATSON ◽  
DAVID OUVRARD

Scale insects (Hemiptera: Sternorrhyncha: Coccomorpha) are obligate plant parasites feeding on plant sap; some are damaging pests in agriculture, horticulture and forestry. Despite their economic importance, the scale insects found in continental Africa have not been extensively studied and the keys for identifying them are incomplete and scattered through the literature in several languages. The aim of this study is to improve our understanding of the African scale insect fauna. As a first step towards their identification, we provide a key to the 23 families currently known from continental Africa, based on slide-mounted adult females, covering Aclerdidae, Asterolecaniidae, Cerococcidae, Coccidae, Conchaspididae, Dactylopiidae, Diaspididae, Eriococcidae, Halimococcidae, Kermesidae, Kerriidae, Kuwaniidae, Lecanodiaspididae, Margarodidae, Matsucoccidae, Micrococcidae, Monophlebidae, Ortheziidae, Phoenicococcidae, Pseudococcidae, Putoidae, Rhizoecidae and Stictococcidae.  


2021 ◽  
Author(s):  
Angela Whittaker

Abstract Magnolia scale, Neolecanium cornuparvum, is a scale insect that is native to the eastern USA, where it is a widely distributed pest of wild and ornamental Magnolia in landscapes and nurseries. In general, non-native species of Magnolia tend to be more susceptible to attack than native US species. N. cornuparvum has also been reported on Wisteria in Connecticut. The genus and species were first reported from Canada from a specimen of N. cornuparvum collected in 1998 in southern Ontario, where the insect is now an established pest of Magnolia, having probably been spread via the plant trade. An infestation of scale insects believed to be N. cornuparvum was first observed in Hawaii on Sesbania tomentosa on Kauai in August 2004; it had significant adverse effects on this endangered species.


2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Denise A Marston ◽  
Daniel L Horton ◽  
Javier Nunez ◽  
Richard J Ellis ◽  
Richard J Orton ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Francesca De Martini ◽  
Nicole L. Coots ◽  
Daniel E. Jasso-Selles ◽  
Jordyn Shevat ◽  
Alison Ravenscraft ◽  
...  

The eukaryotic microbiome of “lower” termites is highly stable and host-specific. This is due to the mutually obligate nature of the symbiosis and the direct inheritance of protists by proctodeal trophallaxis. However, vertical transmission is occasionally imperfect, resulting in daughter colonies that lack one or more of the expected protist species. This phenomenon could conceivably lead to regional differences in protist community composition within a host species. Here, we have characterized the protist symbiont community of Heterotermes tenuis (Hagen) (Blattodea: Rhinotermitidae) from samples spanning South and Central America. Using light microscopy, single cell isolation, and amplicon sequencing, we report eight species-level protist phylotypes belonging to four genera in the phylum Parabasalia. The diversity and distribution of each phylotype’s 18S rRNA amplicon sequence variants (ASVs) mostly did not correlate with geographical or host genetic distances according to Mantel tests, consistent with the lack of correlation we observed between host genetic and geographical distances. However, the ASV distances of Holomastigotoides Ht3 were significantly correlated with geography while those of Holomastigotoides Ht1 were significantly correlated with host phylogeny. These results suggest mechanisms by which termite-associated protist species may diversify independently of each other and of their hosts, shedding light on the coevolutionary dynamics of this important symbiosis.


2017 ◽  
Vol 19 (2) ◽  
pp. 114 ◽  
Author(s):  
K. Trencheva ◽  
G. Trenchev ◽  
R. Tomov ◽  
S.-A. Wu

A preliminary list of non-indigenous scale insect species on ornamental plants in Bulgaria and China is presented. The sampling was done between April and November, 2009, in the framework of the project “Invasive scale insects on ornamental plants in Bulgaria and China”. The insects were collected in nurseries, parks, gardens, botanical collections and greenhouses. Representatives from four families have been identified in Bulgaria, the most numerous of which are the Diaspididae (eight species), Coccidae (four species), Pseudococcidae (two species) and Margarodidae (one species). Three species of non-indigenous scale insects associated with ornamental plants were collected in China, all belonging to the family Pseudococcidae. A list of alien scale insect species on ornamental plants is given, including the sampling sites, host plants on which they were found, origin and first report in both countries.


Zootaxa ◽  
2020 ◽  
Vol 4755 (1) ◽  
pp. 197-200
Author(s):  
DOUGLAS J. WILLIAMS ◽  
BARBARA D. DENNO

A list of genus names in the scale insects published between 2014 and the end of 2019 is provided; it follows on from an earlier comprehensive list of the names published between 1758 and the end of 2013. Each genus name and its type species are assigned to one of the 53 scale insect families now recognised. 


2020 ◽  
Vol 8 (6) ◽  
pp. 906 ◽  
Author(s):  
Francisco L. Massello ◽  
Chia Sing Chan ◽  
Kok-Gan Chan ◽  
Kian Mau Goh ◽  
Edgardo Donati ◽  
...  

The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities’ profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.


2018 ◽  
Vol 150 (5) ◽  
pp. 594-609
Author(s):  
Lucksanaveejit Seubparu ◽  
Mingkwan Nipitwathanaphon ◽  
Wijit Wisoram ◽  
David Merritt ◽  
Lertluk Ngernsiri

AbstractThe filamentous spermatozoa of scale insects (Hemiptera) are highly modified compared with those of typical insects. Here, we investigate the morphology of the testes, sperm bundles, spermatozoa, and spermatogenesis of the winglessKerria chinensis(Mahdihassan) (Hemiptera: Kerriidae), a shellac-producing scale insect. Each testis contains two antiparallel groups of several hundred syncytial sperm bundles. In each spermatocyte cyst, 16 primary spermatocytes divide via inverted meiosis, resulting in 16 quadrinucleated spermatids, each having two euchromatic and two heterochromatic nuclei. During spermiogenesis, each spermatid produces two spermatozoa protruding out of the spermatid close to the two euchromatic nuclei and their tails then grow in opposite directions. In each cyst, the 32 spermatozoa form two sperm bundles lying in an antiparallel direction oriented to different ends of the testis. Each spermatozoon has three distinct regions, an apex, a filamentous region and a tail. The spermatozoa have long thread-like nuclear cores that occupy about one-fourth of the sperm body length, located primarily in the posterior half. At the anterior end of the spermatozoon is a translucent, swollen vesicle and a distal, densely-stained structure; a putative acrosome of a type not previously reported in the spermatozoa of scale insects.


Sign in / Sign up

Export Citation Format

Share Document