scholarly journals De novo SNP calling reveals the candidate genes regulating days to flowering through interspecies GWAS of Amaranthus genus

2021 ◽  
Author(s):  
Ya-Ping Lin ◽  
Tien-Hor Wu ◽  
Yan-Kuang Chan ◽  
Maarten van Zonneveld ◽  
Roland Schafleitner

Amaranths serve as pseudo cereals and also as traditional leafy vegetables worldwide. In addition to high vigor and richness in nutrients, drought and salinity tolerance of amaranth makes it a promising vegetable to acclimatize to the effects of global climate change. The World Vegetable Center genebank conserves about 1,000 amaranth accessions and various agronomic properties of these accessions were recorded during seed regeneration over decades. In this study, we verified the taxonomic annotation of the germplasm based on a 15K SNP set. Besides, in the assumption that the yield components of grain amaranths are different from those of leaf amaranths, we observed that grain amaranths presented larger inflorescences and earlier flowering than leaf amaranths. Dual-purpose amaranth showed larger leaves than leaf amaranths and later flowering than grain amaranths, which seemed reasonable because farmers can harvest more leaves during the prolonged vegetable stage, which also provides recovery time to enrich grain production. Considering frequent interspecies hybridization among grain amaranth complex, we proposed an interspecies GWAS for days to flowering, identifying a AGL20/SOC1 homolog. Meanwhile, another GWAS using only A. tricolor accessions revealed six candidate genes homologous to lba1, bri1, sgs1 and fca. These homologous genes were involved in the regulation of flowering time in Arabidopsis. This study revealed the usefulness of genotypes for species demarcation in the genus Amaranthus and the potential of interspecies GWAS to detect QTLs across different species, opening up the possibility of targeted introduction of specific genetic variants into different Amaranthus species.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ian S. E. Bally ◽  
◽  
Aureliano Bombarely ◽  
Alan H. Chambers ◽  
Yuval Cohen ◽  
...  

Abstract Background Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. Results This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar ‘Tommy Atkins’. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of ‘Tommy Atkins’, supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between ‘Tommy Atkins’ x ‘Kensington Pride’ was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final ‘Tommy Atkins’ genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the ‘Tommy Atkins’ x ‘Kensington Pride’ mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. Conclusions The availability of the complete ‘Tommy Atkins’ mango genome will aid global initiatives to study mango genetics.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Na Zhu ◽  
◽  
Emilia M. Swietlik ◽  
Carrie L. Welch ◽  
Michael W. Pauciulo ◽  
...  

Abstract Background Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease, and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2 (BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined. Methods To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University Irving Medical Center, and the UK NIHR BioResource – Rare Diseases Study. The strength of this combined cohort is a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding variants and performed rare variant association analyses in unrelated participants of European ancestry, including 1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH and APAH-CHD. Results Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than 0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e−5). At least eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development. Conclusions Rare variant analysis of a large international consortium identified two new candidate genes—FBLN2 and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~ 15% of pediatric IPAH may be explained by de novo variants.


Author(s):  
Yi Zhang ◽  
Tao Wang ◽  
Yan Wang ◽  
Kun Xia ◽  
Jinchen Li ◽  
...  

AbstractNeurodevelopmental disorders (NDDs) are a group of diseases characterized by high heterogeneity and frequently co-occurring symptoms. The mutational spectrum in patients with NDDs is largely incomplete. Here, we sequenced 547 genes from 1102 patients with NDDs and validated 1271 potential functional variants, including 108 de novo variants (DNVs) in 78 autosomal genes and seven inherited hemizygous variants in six X chromosomal genes. Notably, 36 of these 78 genes are the first to be reported in Chinese patients with NDDs. By integrating our genetic data with public data, we prioritized 212 NDD candidate genes with FDR < 0.1, including 17 novel genes. The novel candidate genes interacted or were co-expressed with known candidate genes, forming a functional network involved in known pathways. We highlighted MSL2, which carried two de novo protein-truncating variants (p.L192Vfs*3 and p.S486Ifs*11) and was frequently connected with known candidate genes. This study provides the mutational spectrum of NDDs in China and prioritizes 212 NDD candidate genes for further functional validation and genetic counseling.


Author(s):  
Bixia Zheng ◽  
Steve Seltzsam ◽  
Chunyan Wang ◽  
Luca Schierbaum ◽  
Sophia Schneider ◽  
...  

Abstract Background Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidney, may also represent monogenic causes of CAKUT. Methods We here performed whole exome sequencing (WES) in 541 families with CAKUT and generated 4 lists of CAKUT candidate genes: A) 36 FOX genes showing high expression during renal development, B) 4 FOX genes known to cause CAKUT to validate list A; C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families, and D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. Results To prioritize potential novel CAKUT candidates in FOX gene family, we overlapped 36 FOX genes (list A) with list C and D of WES-derived CAKUT candidates. Intersection with list C, identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D, identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. Conclusion We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.


Author(s):  
Sana Amanat ◽  
Teresa Requena ◽  
Jose Antonio Lopez-Escamez

Exome sequencing has been commonly used in rare diseases by selecting multiplex families or singletons with an extreme phenotype (EP) to search for rare variants in coding regions. The EP strategy covers both extreme ends of a disease spectrum and it has been also used to investigate the contribution of rare variants to heritability in complex clinical traits. We have conducted a systematic review to find evidence supporting the use of EP strategies to search for rare variants in genetic studies of complex diseases, to highlight the contribution of rare variation to the genetic structure of multiallelic conditions. After performing the quality assessment of the retrieved records, we selected 19 genetic studies considering EP to demonstrate genetic association. All the studies successfully identified several rare variants, de novo mutations and many novel candidate genes were also identified by selecting an EP. There is enough evidence to support that the EP approach in patients with an early onset of the disease can contribute to the identification of rare variants in candidate genes or pathways involved in complex diseases. EP patients may contribute to a better understanding of the underlying genetic architecture of common heterogeneous disorders such as tinnitus or age-related hearing loss.


2018 ◽  
Vol 115 (20) ◽  
pp. 5247-5252 ◽  
Author(s):  
Qihui Zhu ◽  
Frances A. High ◽  
Chengsheng Zhang ◽  
Eliza Cerveira ◽  
Meaghan K. Russell ◽  
...  

Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B. We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0199788 ◽  
Author(s):  
Wenjin Lin ◽  
Wei Huang ◽  
Shuju Ning ◽  
Xiaohua Wang ◽  
Qi Ye ◽  
...  
Keyword(s):  

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 439 ◽  
Author(s):  
Maksim S. Makarenko ◽  
Alexander V. Usatov ◽  
Tatiana V. Tatarinova ◽  
Kirill V. Azarin ◽  
Maria D. Logacheva ◽  
...  

This study provides insights into the flexibility of the mitochondrial genome in sunflower (Helianthus annuus L.) as well as into the causes of ANN2-type cytoplasmic male sterility (CMS). De novo assembly of the mitochondrial genome of male-sterile HA89(ANN2) sunflower line was performed using high-throughput sequencing technologies. Analysis of CMS ANN2 mitochondrial DNA sequence revealed the following reorganization events: twelve rearrangements, seven insertions, and nine deletions. Comparisons of coding sequences from the male-sterile line with the male-fertile line identified a deletion of orf777 and seven new transcriptionally active open reading frames (ORFs): orf324, orf327, orf345, orf558, orf891, orf933, orf1197. Three of these ORFs represent chimeric genes involving atp6 (orf1197), cox2 (orf558), and nad6 (orf891). In addition, orf558, orf891, orf1197, as well as orf933, encode proteins containing membrane domain(s), making them the most likely candidate genes for CMS development in ANN2. Although the investigated CMS phenotype may be caused by simultaneous action of several candidate genes, we assume that orf1197 plays a major role in developing male sterility in ANN2. Comparative analysis of mitogenome organization in sunflower lines representing different CMS sources also allowed identification of reorganization hot spots in the mitochondrial genome of sunflower.


Sign in / Sign up

Export Citation Format

Share Document