scholarly journals Plant structural and nutritional responses to drought differ among common pasture species

2021 ◽  
Author(s):  
Karen L. M. Catunda ◽  
Amber C. Churchill ◽  
Sally A. Power ◽  
Haiyang Zhang ◽  
Kathryn J. Fuller ◽  
...  

In the face of a changing climate, research indicates that more frequent and severe drought conditions are critical problems that will constrain production of high-quality forage and influence the performance of grazing animals in the future. In addition, the duration of drought and potential trade-offs between plant morphology and nutritional composition may influence plant drought adaptation strategies across pasture species, and the consequences for forage quality are not well understood. Here we present the results of a study investigating the effects of drought on biomass productivity, dead material, leaf:stem biomass allocation and nutritional composition (whole-plant and tissue-specific) across nine diverse pasture species. For this, we conducted a field experiment exposing species to a 6-month period of simulated severe drought (60% rainfall reduction during winter and spring) and samples were collected at multiple harvests. We found that drought had different, harvest-specific effects on plant biomass structure and nutritional composition among pasture species. The severity of drought impacts on productivity, but not on nutritional quality, increased with drought duration. In general, drought strongly reduced productivity, increased the percentage of dead material and had mixed effects (increases, decreases and no effect) on leaf:stem ratio and concentrations of crude protein, non-structural carbohydrates, neutral detergent fibre and lignin. Changes in plant-level nutritional quality were driven by simultaneous changes in both leaf and stem tissues for most, but not all, species. Our findings may be especially helpful for selection of adapted species/cultivars that could minimize potential drought risks on forage, thereby optimising pasture performance under future drought scenarios.

2021 ◽  
Author(s):  
Karen L. M. Catunda ◽  
Amber C. Churchill ◽  
Haiyang Zhang ◽  
Sally A. Power ◽  
Ben D. Moore

AbstractUnder warmer and drier future conditions, global livestock and dairy production are threatened by impacts on the productivity and nutritional quality of pastures. However, morphological and nutritional adjustments within plants in response to warming and drought vary among species and less is known how these relate to production and forage quality. To investigate this, we grew two common pasture species, tall fescue (Festuca arundinacea: grass) and lucerne (Medicago sativa: legume), in a climate-controlled facility, under different temperatures (ambient and elevated) and watering regimes (well-watered and droughted). We found that drought had a strong negative impact on biomass production, morphology and nutritional quality while warming only significantly affected both species when response metrics were considered in concert, although to a lesser degree than the drought. Furthermore, interactions between warming and drought were only seen for lucerne, with the greatest reduction in biomass and most dead material and dry matter content. In tall fescue, drought had bigger impacts on nutritional composition than morphological traits, while in lucerne, drought affected all morphological traits and most nutritional parameters. These findings suggest that in future climate scenarios, drought may be a stronger driver of changes in the morphology and nutritional composition of pasture grasses and legumes, compared to modest levels of warming.


2021 ◽  
pp. 1-8
Author(s):  
Julie Perron ◽  
Sonia Pomerleau ◽  
Pierre Gagnon ◽  
Joséane Gilbert-Moreau ◽  
Simone Lemieux ◽  
...  

Abstract Objective: The Food Quality Observatory was created in the province of Quebec (Canada) in 2016. In this study, the Observatory aimed to generate a methodology to (1) test the use of sales data combined with nutrient values to characterise the nutritional composition of ready-to-eat (RTE) breakfast cereals offered and purchased in the province of Quebec (Canada) and (2) verify the extent to which a front-of-pack label based on the percentage of daily value (DV) for total sugar, as a strategy to improve the food supply, would be distributed in this food category. Design: Nutritional information were obtained by purchasing each RTE breakfast cereal available in the Greater Montreal area. Cereals were then classified according to their processing type. Setting: The nutritional values of 331 RTE breakfast cereals available in Quebec were merged with sales data covering the period between May 2016 and May 2017. A total of 306 products were successfully cross-referenced. Results: Granola and sweetened cereals were the most available (36·6 % and 19·6 %, respectively) and purchased (19·8 % and 40·9 % of sales, respectively). When compared with other types of cereals, granola cereals had a higher energy, fat, saturated fat, protein content and a lower Na content. A larger proportion of chocolate (65 %) and sweetened cereals (49 %) were above 15 % of the DV for sugar. Conclusions: This study showed that the methodology developed generates important data to monitor nutritional quality of the food supply and ultimately contribute to improve the nutritional quality of processed foods.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


2007 ◽  
Vol 10 (7) ◽  
pp. 690-700 ◽  
Author(s):  
E Labouze ◽  
C Goffi ◽  
L Moulay ◽  
V Azaïs-Braesco

AbstractBackground/objectivesWith obesity and nutrition-related diseases rising, public health authorities have recently insisted nutritional quality be included when advertising and labelling food. The concept of nutritional quality is, however, difficult to define. In this paper we present an innovative, science-based nutrient profiling system, Nutrimap®, which quantifies nutritional assets and weaknesses of foods.MethodsThe position of a food is defined according to its nutritional composition, food category, the consumer's nutritional needs, consumption data and major public health objectives for nutrition. Amounts of each of 15 relevant nutrients (in 100 kcal) are scored according to their ability to ‘rebalance’ or ‘unbalance’ the supply in the whole diet, compared with current recommendations and intakes. These scores are weighted differently in different food categories according to the measured relevance of the category to a nutrient's supply. Positive (assets) and negative (weaknesses) scores are totalled separately.ResultsNutrimap®provides an overall estimate of the nutritional quality of same-category foods, enabling easy comparisons as exemplified for cereals and fruit/vegetables. Results are consistent with major nutritional recommendations and match classifications provided by other systems. Simulations for breakfasts show that Nutrimap®can help design meals of controlled nutritional value.ConclusionsCombining objective scientific bases with pragmatic concerns, Nutrimap®appears to be effective in comparing food items. Decision-makers can set their own limits within the Nutrimap®-defined assets and weaknesses of foods and reach categorisations consistent with their objectives – from regulatory purposes to consumer information or support for designing meals (catering) or new products (food industry).


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Irene N. Kiura ◽  
Bernard M. Gichimu ◽  
Felix Rotich

Productivity of bulb onions (Allium cepa L.) is largely constrained by postharvest losses. There are several postharvest strategies applicable to onions, but they are mostly applied singularly and therefore their combined effects have not been well studied. This study was set out to evaluate the effects of harvesting stage, curing period, and time of topping on postharvest quality of stored red bulb onions. The study was carried out in Yatta Subcounty, Machakos County, Kenya. The experimental design was split-split plot laid out in a 3 × 3 × 2 factorial arrangement. The treatments consisted of harvesting stage (25%, 50%, and 75% top fall), curing period (none, 1 week, and 2 weeks after harvesting), and time of topping (before and after curing). All the treatments were replicated three times. After 3 months of storage, the bulbs were analyzed for proximate and nutritional composition. Bulbs that were harvested at 75% top fall and cured for one or two weeks before topping retained higher moisture content, bulb weight, crude protein, vitamin C, zinc, potassium, calcium, and iron but lower sodium content after three-month storage. These practices are therefore recommended for maintaining the nutritional quality of bulb onions after harvesting.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Kibrom B. Abreha ◽  
Muluken Enyew ◽  
Anders S. Carlsson ◽  
Ramesh R. Vetukuri ◽  
Tileye Feyissa ◽  
...  

Abstract Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Abstract Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for development of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich using modern plant breeding techniques.


Author(s):  
Ronaldo Elias de Mello-Júnior ◽  
Nathane Silva Resende ◽  
Jefferson Luiz Gomes Corrêa ◽  
Leila Aparecida Salles Pio ◽  
Elisângela Elena Nunes Carvalho

Dekopon or Hallabong (Citrus reticulate “Shiranui”) is a hybrid fruit that belongs to the citrus fruits. The scientific and commercial interests in dekopon is due to its nutritional composition. The objective of the study was to verify the influence of ethanol as a pretreatment in reducing drying time as well as maintaining nutritional quality (vitamin C, total phenolic compounds, and antioxidant activity) of dekopon slices. The drying with ethanol at 70 °C promoted the greatest reduction in drying time, but the processed pretreated samples at 50 °C presented the highest level of nutritional quality parameters. Keywords: drying time; vitamin C; phenolic compounds; antioxidant activity 


2011 ◽  
Vol 92 (8) ◽  
pp. 1930-1938 ◽  
Author(s):  
Mónica Betancourt ◽  
Aurora Fraile ◽  
Fernando García-Arenal

Two groups of Cucumber mosaic virus (CMV) satellite RNAs (satRNAs), necrogenic and non-necrogenic, can be differentiated according to the symptoms they cause in tomato plants, a host in which they also differ in fitness. In most other CMV hosts these CMV-satRNA cause similar symptoms. Here, we analyse whether they differ in traits determining their relative fitness in melon plants, in which the two groups of CMV-satRNAs cause similar symptoms. For this, ten necrogenic and ten non-necrogenic field satRNA genotypes were assayed with Fny-CMV as a helper virus. Neither type of CMV-satRNA modified Fny-CMV symptoms, and both types increased Fny-CMV virulence similarly, as measured by decreases in plant biomass and lifespan. Necrogenic and non-necrogenic satRNAs differed in their ability to multiply in melon tissues; necrogenic satRNAs accumulated to higher levels both in single infection and in competition with non-necrogenic satRNAs. Indeed, multiplication of some non-necrogenic satRNAs was undetectable. Transmission between hosts by aphids was less efficient for necrogenic satRNAs as a consequence of a more severe reduction of CMV accumulation in leaves. The effect of CMV accumulation on aphid transmission was not compensated for by differences in satRNA encapsidation efficiency or transmissibility to CMV progeny. Thus, necrogenic and non-necrogenic satRNAs differ in their relative fitness in melon, and trade-offs are apparent between the within-host and between-host components of satRNA fitness. Hence, CMV-satRNAs could have different evolutionary dynamics in CMV host-plant species in which they do not differ in pathogenicity.


2021 ◽  
Author(s):  
Lena Reifschneider ◽  
Vinzenz Franz Eichinger ◽  
Evelin Pihlap ◽  
Noelia Garcia-Franco ◽  
Anna Kühnel ◽  
...  

<p>The application of rock powder is an option to improve soil fertility while valorising the overburden material produced by industries. The “enhanced weathering” of silicate rock has also gained recent interest in the scientific community for its potential to mitigate climate change. However, the effect of rock powder on the soil physical properties remains unclear, especially under climate change (e.g., increasing drought events). Prior to any large scale application of rock powder, it is crucial to disentangle the potential effects of rock powder application on its environment. In a mesocosm experiment, we explored the effect of three rock powders on plant biomass, soil aggregation and organic carbon (OC) allocation within aggregates, in two soils with clayey and sandy textures, under regular watering or severe drought conditions. We demonstrate that the rock powder was the third factor after drought and soil texture significantly affecting the plant growth, resulting in a significant plant biomass decrease ranging from - 13 % to - 42 % compared with the control. We mainly attribute this effect to the increase of the already neutral soil pH, along with the release of excessive heavy metal amounts at a toxic range for the plant. Yet, we found that adding rock powder to the soil resulted in an increase of the relative amount of microaggregates in the soil by up to + 70 %, along with a re-distribution of OC within the fine fractions of the soil (up to + 32 % of OC in < 250 µm fractions). The new mineral-mineral and organo-mineral interactions promoted by the rock powder addition could potentially favour OC persistence in soil on the long term. With our results, we insist on the potential risks for plant growth associated to the application of rock powder when not handled properly. In addition to the current enthusiasm around the capacity of rock powder to enhance carbon sequestration in the inorganic form, we also encourage scientists to focus their research on its effect on soil structure properties and OC storage.</p>


Sign in / Sign up

Export Citation Format

Share Document