scholarly journals An increase in surface hydrophobicity mediates chaperone activity in N-chlorinated proteins

2021 ◽  
Author(s):  
Marharyta Varatnitskaya ◽  
Julia Fasel ◽  
Alexandra Müller ◽  
Natalie Lupilov ◽  
Yunlong Shi ◽  
...  

Under physiological conditions, Escherichia coli RidA is an enamine/imine deaminase, which promotes the release of ammonia from reactive enamine/imine intermediates. However, when modified by hypochlorous acid (HOCl), as produced by the host defense, RidAHOCl turns into a potent chaperone-like holdase that can effectively protect the proteome of E. coli during oxidative stress. We previously reported that the activation of RidA's chaperone-like function coincides with the addition of at least seven and up to ten chlorine atoms. These atoms are reversibly added to basic amino acids in RidAHOCl and removal by reducing agents leads to inactivation. Nevertheless, it remains unclear, which residues in particular need to be chlorinated for activation. Here, we employ a combination of LC-MS/MS analysis, a chemo-proteomic approach, and a mutagenesis study to identify residues responsible for RidA's chaperone-like function. Through LC-MS/MS of digested RidAHOCl, we obtained direct evidence of the chlorination of one arginine residue (and, coincidentally, two tyrosine residues), while other N-chlorinated residues could not be detected, presumably due to the instability of the modification and its potential interference with a proteolytic digest. Therefore, we established a chemoproteomic approach using 5-(dimethylamino) naphthalene-1-sulfinic acid (DANSO2H) as a probe to label N-chlorinated lysines. Using this probe, we were able to detect the N-chlorination of six additional lysine residues. Moreover, using a mutagenesis study to genetically probe the role of single arginine and lysine residues, we found that the removal of arginines R105 and R128 leads to a substantial reduction of RidAHOCl's chaperone activity. These results, together with structural analysis, confirm that the chaperone activity of RidA is concomitant with the loss of positive charges on the protein surface, leading to an increased overall protein hydrophobicity. Molecular modelling of RidAHOCl and the rational design of a RidA variant that shows chaperone activity even in the absence of HOCl further supports our hypothesis. Our data provide a molecular mechanism for HOCl-mediated chaperone activity found in RidA and a growing number of other HOCl-activated chaperones.

2007 ◽  
Vol 310 (1-2) ◽  
pp. 235-239 ◽  
Author(s):  
Edathara C. Abraham ◽  
Jin Huaqian ◽  
Atya Aziz ◽  
Anbarasu Kumarasamy ◽  
Poppy Datta

2019 ◽  
Author(s):  
Julia A. Horstmann ◽  
Michele Lunelli ◽  
Hélène Cazzola ◽  
Johannes Heidemann ◽  
Caroline Kühne ◽  
...  

AbstractThe flagellum is the motility device of many bacteria and the long external filament is made of several thousand copies of a single protein, flagellin. While posttranslational modifications of flagellin are common among bacterial pathogens, the role of lysine methylation remained unknown. Here, we show that both flagellins of Salmonella enterica, FliC and FljB, are methylated at surface-exposed lysine residues. A Salmonella mutant deficient in flagellin methylation was outcompeted for gut colonization in a gastroenteritis mouse model. In support, methylation of flagellin promoted invasion of epithelial cells in vitro. Lysine methylation increased the surface hydrophobicity of flagellin and enhanced flagella-dependent adhesion of Salmonella to phosphatidylcholine vesicles and epithelial cells. In summary, posttranslational flagellin methylation constitutes a novel mechanism how flagellated bacteria facilitate adhesion to hydrophobic host cell surfaces and thereby contributes to efficient gut colonization and successful infection of the host.


2012 ◽  
Vol 449 (2) ◽  
pp. 531-542 ◽  
Author(s):  
Katrina A. Hadfield ◽  
David I. Pattison ◽  
Bronwyn E. Brown ◽  
Liming Hou ◽  
Kerry-Anne Rye ◽  
...  

Oxidative modification of HDLs (high-density lipoproteins) by MPO (myeloperoxidase) compromises its anti-atherogenic properties, which may contribute to the development of atherosclerosis. Although it has been established that HOCl (hypochlorous acid) produced by MPO targets apoA-I (apolipoprotein A-I), the major apolipoprotein of HDLs, the role of the other major oxidant generated by MPO, HOSCN (hypothiocyanous acid), in the generation of dysfunctional HDLs has not been examined. In the present study, we characterize the structural and functional modifications of lipid-free apoA-I and rHDL (reconstituted discoidal HDL) containing apoA-I complexed with phospholipid, induced by HOSCN and its decomposition product, OCN− (cyanate). Treatment of apoA-I with HOSCN resulted in the oxidation of tryptophan residues, whereas OCN− induced carbamylation of lysine residues to yield homocitrulline. Tryptophan residues were more readily oxidized on apoA-I contained in rHDLs. Exposure of lipid-free apoA-I to HOSCN and OCN− significantly reduced the extent of cholesterol efflux from cholesterol-loaded macrophages when compared with unmodified apoA-I. In contrast, HOSCN did not affect the anti-inflammatory properties of rHDL. The ability of HOSCN to impair apoA-I-mediated cholesterol efflux may contribute to the development of atherosclerosis, particularly in smokers who have high plasma levels of SCN− (thiocyanate).


2020 ◽  
Vol 295 (10) ◽  
pp. 3202-3212 ◽  
Author(s):  
Yeongjin Baek ◽  
Jinwoo Kim ◽  
Jinsook Ahn ◽  
Inseong Jo ◽  
Seokho Hong ◽  
...  

In response to microbial invasion, the animal immune system generates hypochlorous acid (HOCl) that kills microorganisms in the oxidative burst. HOCl toxicity is amplified in the phagosome through import of the copper cation (Cu2+). In Escherichia coli and Salmonella, the transcriptional regulator RclR senses HOCl stress and induces expression of the RclA, -B, and -C proteins involved in bacterial defenses against oxidative stress. However, the structures and biochemical roles of the Rcl proteins remain to be elucidated. In this study, we first examined the role of the flavoprotein disulfide reductase (FDR) RclA in the survival of Salmonella in macrophage phagosomes, finding that RclA promotes Salmonella survival in macrophage vacuoles containing sublethal HOCl levels. To clarify the molecular mechanism, we determined the crystal structure of RclA from E. coli at 2.9 Å resolution. This analysis revealed that the structure of homodimeric RclA is similar to those of typical FDRs, exhibiting two conserved cysteine residues near the flavin ring of the cofactor flavin adenine dinucleotide (FAD). Of note, we observed that Cu2+ accelerated RclA-mediated oxidation of NADH, leading to a lowering of oxygen levels in vitro. Compared with the RclA WT enzyme, substitution of the conserved cysteine residues lowered the specificity to Cu2+ or substantially increased the production of superoxide anion in the absence of Cu2+. We conclude that RclA-mediated lowering of oxygen levels could contribute to the inhibition of oxidative bursts in phagosomes. Our study sheds light on the molecular basis for how bacteria can survive HOCl stress in macrophages.


1973 ◽  
Vol 29 (02) ◽  
pp. 353-362
Author(s):  
J Lisiewicz ◽  
A Pituch ◽  
J. A Litwin

SummaryThe local Sanarelli-Shwartzman phenomenon (SSP-L) in the skin of 30 rats was induced by an intr a cutaneous sensitizing injection of leukaemic leucocytes isolated from the peripheral blood of patients with chronic lymphocytic leukaemia (CLL), acute myeloblastic leukaemia (AL) and chronic granulocytic leukaemia (CGL) and challenged by an intravenous injection of 100(μ of E. coli endotoxin. SSP-L was observed in 7 rats after injection of CLL lymphocytes and in 6 and 2 rats after AL myeloblasts and the CGL granulocytes, respectively. The lesions in the skin after AL myeloblasts appeared in a shorter time and were of longer duration compared with those observed after CLL lymphocytes and CGL granulocytes. Histologically, the lesions consisted of areas of destruction in the superficial layers of the skin ; the demarcation line showed the presence of neutrophils, macrophages and erythrocytes. Haemorrhages and fibrin deposits near the demarcation line were larger after injection of CLL lymphocytes and AL myeloblasts than after CGL granulocytes. The possible role of leucocyte procoagulative substances in the differences observed have been discussed.


2018 ◽  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

<div> <div> <div> <p>The model and analysis methods developed in this work are generally applicable to any polymer electrolyte/cation-anion combination, but we focus on the currently most prominent polymer electrolyte material system: poly(ethylene) oxide/Li- bis(trifluoromethane) sulfonamide (PEO + LiTFSI). The obtained results are surprising and challenge the conventional understanding of ionic transport in polymer electrolytes: the investigation of a technologically relevant salt concentration range (1 - 4 M) revealed the central role of the anion in coordinating and hindering Li ion movement. Our results provide insights into correlated ion dynamics, at the same time enabling rational design of better PEO-based electrolytes. In particular, we report the following novel observations. 1. Strong binding of the Li cation with the polymer competes with significant correlation of the cation with the salt anion. 2. The appearance of cation-anion clusters, especially at high concentration. 3. The asymmetry in the composition (and therefore charge) of such clusters; specifically, we find the tendency for clusters to have a higher number of anions than cations.</p> </div> </div> </div>


2018 ◽  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

<div> <div> <div> <p>The model and analysis methods developed in this work are generally applicable to any polymer electrolyte/cation-anion combination, but we focus on the currently most prominent polymer electrolyte material system: poly(ethylene) oxide/Li- bis(trifluoromethane) sulfonamide (PEO + LiTFSI). The obtained results are surprising and challenge the conventional understanding of ionic transport in polymer electrolytes: the investigation of a technologically relevant salt concentration range (1 - 4 M) revealed the central role of the anion in coordinating and hindering Li ion movement. Our results provide insights into correlated ion dynamics, at the same time enabling rational design of better PEO-based electrolytes. In particular, we report the following novel observations. 1. Strong binding of the Li cation with the polymer competes with significant correlation of the cation with the salt anion. 2. The appearance of cation-anion clusters, especially at high concentration. 3. The asymmetry in the composition (and therefore charge) of such clusters; specifically, we find the tendency for clusters to have a higher number of anions than cations.</p> </div> </div> </div>


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


2018 ◽  
Vol 24 (26) ◽  
pp. 3072-3083 ◽  
Author(s):  
Sowndramalingam Sankaralingam ◽  
Angham Ibrahim ◽  
MD Mizanur Rahman ◽  
Ali H. Eid ◽  
Shankar Munusamy

Background: The incidence and prevalence of diabetes mellitus are increasing globally at alarming rates. Cardiovascular and renal complications are the major cause of morbidity and mortality in patients with diabetes. Methylglyoxal (MG) - a highly reactive dicarbonyl compound – is increased in patients with diabetes and has been implicated to play a detrimental role in the etiology of cardiovascular and renal complications. Derived from glucose, MG binds to arginine and lysine residues in proteins, and the resultant end products serve as surrogate markers of MG generation in vivo. Under normal conditions, MG is detoxified by the enzyme glyoxalase 1 (Glo1), using reduced glutathione as a co-factor. Elevated levels of MG is known to cause endothelial and vascular dysfunction, oxidative stress and atherosclerosis; all of which are risk factors for cardiovascular diseases. Moreover, MG has also been shown to cause pathologic structural alterations and impair kidney function. Conversely, MG scavengers (such as N-acetylcysteine, aminoguanidine or metformin) or Nrf2/Glo1 activators (such as trans-resveratrol / hesperetin) are shown to be useful in preventing MG-induced cardiovascular and renal complications in diabetes. However, clinical evidence supporting the MG lowering properties of these agents are limited and hence, need further investigation. Conclusion: Reducing MG levels directly using scavengers or indirectly via activation of Nrf2/Glo1 may serve as a novel and potent therapeutic strategy to counter the deleterious effects of MG in diabetic complications.


Sign in / Sign up

Export Citation Format

Share Document