scholarly journals Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks

2021 ◽  
Author(s):  
Aran Nayebi ◽  
Alexander Attinger ◽  
Malcolm G. Campbell ◽  
Kiah Hardcastle ◽  
Isabel I.C. Low ◽  
...  

Medial entorhinal cortex (MEC) supports a wide range of navigational and memory related behaviors. Well-known experimental results have revealed specialized cell types in MEC --- e.g. grid, border, and head-direction cells --- whose highly stereotypical response profiles are suggestive of the role they might play in supporting MEC functionality. However, the majority of MEC neurons do not exhibit stereotypical firing patterns. How should the response profiles of these more "heterogeneous" cells be described, and how do they contribute to behavior? In this work, we took a computational approach to addressing these questions. We first performed a statistical analysis that shows that heterogeneous MEC cells are just as reliable in their response patterns as the more stereotypical cell types, suggesting that they have a coherent functional role. Next, we evaluated a spectrum of candidate models in terms of their ability to describe the response profiles of both stereotypical and heterogeneous MEC cells. We found that recently developed task-optimized neural network models are substantially better than traditional grid cell-centric models at matching most MEC neuronal response profiles --- including those of grid cells themselves --- despite not being explicitly trained for this purpose. Specific choices of network architecture (such as gated nonlinearities and an explicit intermediate place cell representation) have an important effect on the ability of the model to generalize to novel scenarios, with the best of these models closely approaching the noise ceiling of the data itself. We then performed "in-silica" experiments on this model to address questions involving the relative functional relevance of various cell types, finding that heterogeneous cells are likely to be just as involved in downstream functional outcomes (such as path integration) as grid and border cells. Finally, inspired by recent data showing that, going beyond their spatial response selectivity, MEC cells are also responsive to non-spatial rewards, we introduce a new MEC model that performs reward-modulated path integration. We find that this unified model matches neural recordings across all variable-reward conditions. Taken together, our results point toward a conceptually principled goal-driven modeling approach for moving future experimental and computational efforts beyond overly-simplistic single-cell stereotypes.

2014 ◽  
Vol 369 (1635) ◽  
pp. 20120520 ◽  
Author(s):  
Christoph Schmidt-Hieber ◽  
Michael Häusser

Neurons in the medial entorhinal cortex fire action potentials at regular spatial intervals, creating a striking grid-like pattern of spike rates spanning the whole environment of a navigating animal. This remarkable spatial code may represent a neural map for path integration. Recent advances using patch-clamp recordings from entorhinal cortex neurons in vitro and in vivo have revealed how the microcircuitry in the medial entorhinal cortex may contribute to grid cell firing patterns, and how grid cells may transform synaptic inputs into spike output during firing field crossings. These new findings provide key insights into the ingredients necessary to build a grid cell.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
J. Cuneo ◽  
L. Barboni ◽  
N. Blanco ◽  
M. del Castillo ◽  
J. Quagliotti

This article presents the implementation and use of a two-wheel autonomous robot and its effectiveness as a tool for studying the recently discovered use of grid cells as part of mammalian’s brains space-mapping circuitry (specifically the medial entorhinal cortex). A proposed discrete-time algorithm that emulates the medial entorhinal cortex is programed into the robot. The robot freely explores a limited laboratory area in the manner of a rat or mouse and reports information to a PC, thus enabling research without the use of live individuals. Position coordinate neural maps are achieved as mathematically predicted although for a reduced number of implemented neurons (i.e., 200 neurons). However, this type of computational embedded system (robot’s microcontroller) is found to be insufficient for simulating huge numbers of neurons in real time (as in the medial entorhinal cortex). It is considered that the results of this work provide an insight into achieving an enhanced embedded systems design for emulating and understanding mathematical neural network models to be used as biologically inspired navigation system for robots.


2019 ◽  
Author(s):  
Hugh Pastoll ◽  
Derek Garden ◽  
Ioannis Papastathopoulos ◽  
Gülşen Sürmeli ◽  
Matthew F. Nolan

AbstractDistinctions between cell types underpin organisational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we find that integrative properties vary between mice and, in contrast to modularity of grid cell spatial scales, have a continuous dorsoventral organisation. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit level set points that vary within and between animals.


2021 ◽  
Author(s):  
Horst A. Obenhaus ◽  
Weijian Zong ◽  
R. Irene Jacobsen ◽  
Tobias Rose ◽  
Flavio Donato ◽  
...  

SummaryThe medial entorhinal cortex (MEC) creates a map of local space, based on the firing patterns of grid, head direction (HD), border, and object-vector (OV) cells. How these cell types are organized anatomically is debated. In-depth analysis of this question requires collection of precise anatomical and activity data across large populations of neurons during unrestrained behavior, which neither electrophysiological nor previous imaging methods fully afford. Here we examined the topographic arrangement of spatially modulated neurons in MEC and adjacent parasubiculum using miniaturized, portable two-photon microscopes, which allow mice to roam freely in open fields. Grid cells exhibited low levels of co-occurrence with OV cells and clustered anatomically, while border, HD and OV cells tended to intermingle. These data suggest that grid-cell networks might be largely distinct from those of border, HD and OV cells and that grid cells exhibit strong coupling among themselves but weaker links to other cell types.Highlights- Grid and object vector cells show low levels of regional co-occurrence- Grid cells exhibit the strongest tendency to cluster among all spatial cell types- Grid cells stay separate from border, head direction and object vector cells- The territories of grid, head direction and border cells remain stable over weeks


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hugh Pastoll ◽  
Derek L Garden ◽  
Ioannis Papastathopoulos ◽  
Gülşen Sürmeli ◽  
Matthew F Nolan

Distinctions between cell types underpin organizational principles for nervous system function. Functional variation also exists between neurons of the same type. This is exemplified by correspondence between grid cell spatial scales and the synaptic integrative properties of stellate cells (SCs) in the medial entorhinal cortex. However, we know little about how functional variability is structured either within or between individuals. Using ex-vivo patch-clamp recordings from up to 55 SCs per mouse, we found that integrative properties vary between mice and, in contrast to the modularity of grid cell spatial scales, have a continuous dorsoventral organization. Our results constrain mechanisms for modular grid firing and provide evidence for inter-animal phenotypic variability among neurons of the same type. We suggest that neuron type properties are tuned to circuit-level set points that vary within and between animals.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20120523 ◽  
Author(s):  
Michael E. Hasselmo

Data show a relationship of cellular resonance and network oscillations in the entorhinal cortex to the spatial periodicity of grid cells. This paper presents a model that simulates the resonance and rebound spiking properties of entorhinal neurons to generate spatial periodicity dependent upon phasic input from medial septum. The model shows that a difference in spatial periodicity can result from a difference in neuronal resonance frequency that replicates data from several experiments. The model also demonstrates a functional role for the phenomenon of theta cycle skipping in the medial entorhinal cortex.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20130369 ◽  
Author(s):  
James J. Knierim ◽  
Joshua P. Neunuebel ◽  
Sachin S. Deshmukh

The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.


2018 ◽  
Author(s):  
Eli Pollock ◽  
Niral Desai ◽  
Xue-xin Wei ◽  
Vijay Balasubramanian

Grid cells in the entorhinal cortex are believed to establish their regular, spatially correlated firing patterns by path integration of the animal’s motion. Mechanisms for path integration, e.g. in attractor network models, predict stochastic drift of grid responses, which is not observed experimentally. We demonstrate a biologically plausible mechanism of dynamic self-organization by which border cells, which fire at environmental boundaries, can correct such drift in grid cells. In our model, experience-dependent Hebbian plasticity during exploration allows border cells to learn connectivity to grid cells. Border cells in this learned network reset the phase of drifting grids. This error-correction mechanism is robust to environmental shape and complexity, including enclosures with interior barriers, and makes distinctive predictions for environmental deformation experiments. Our work demonstrates how diverse cell types in the entorhinal cortex could interact dynamically and adaptively to achieve robust path integration.


2018 ◽  
Author(s):  
Nupur Katyare ◽  
Sujit Sikdar

Grid cell spatial period is thought to be dictated by a mapping between the speed-direction modulated excitatory inputs, and consequent modulation of the firing rate, yet, the exact underlying mechanisms are not known. Here, through experiments on the medial entorhinal cortex stellate cells, subjected to in-vivo like stochastic synaptic activity through the dynamic clamp, we show that such mapping can emerge from a theta-frequency resonance in the signal gain, which is HCN sensitive, robust to noise, and is potent enough to modulate the synaptic responses in the theta frequency. This modulation also extends to the corresponding theta-gamma modulation of the firing rate, the slope of whose excitation mediated increase is steeper in the presence of HCN channels. We also show that in the cells devoid of HCN channels, inhibition can emulate their role. Considering the dorso-ventral gradients of HCN and inhibition, which are present aligned to the grid spacing gradient in the medial entorhinal cortex, these findings should be noteworthy.


Sign in / Sign up

Export Citation Format

Share Document