scholarly journals Resistome characterization of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from wastewater treatment utilities in Oregon

Author(s):  
Maeghan Easler ◽  
Clint Cheney ◽  
Jared D Johnson ◽  
Marjan Khorshidi Zadeh ◽  
Jacquelynn N Nguyen ◽  
...  

Infections resistant to broad spectrum antibiotics due to the emergence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae is of global concern. This study characterizes the resistome (i.e., entire ecology of resistance determinants) of 11 ESBL-producing Escherichia coli isolates collected from eight wastewater treatment utilities across Oregon. Whole genome sequencing was performed to identify the most abundant antibiotic resistance genes including ESBL-associated genes, virulence factors, as well as their sequence types. Moreover, the phenotypes of antibiotic resistance were characterized. ESBL-associated genes (i.e., blaCMY, blaCTX, blaSHV, blaTEM) were found in all but one of the isolates with five isolates carrying two of these genes (4 with blaCTX and blaTEM; 1 with blaCMY and blaTEM). The ampC gene and virulence factors were present in all the E. coli isolates. Across all the isolates, 31 different antibiotic resistance genes were identified. Additionally, all E. coli isolates harbored phenotypic resistance to beta-lactams (penicillins and cephalosporins), while eight of the 11 isolates carried multi-drug resistance phenotypes (resistance to three or more classes of antibiotics). Findings highlight the risks associated with the presence of ESBL-producing E. coli isolates in wastewater systems that have the potential to enter the environment and may pose direct or indirect risks to human health.

2011 ◽  
Vol 5 (12) ◽  
pp. 850-855 ◽  
Author(s):  
Fatna Bourjilat ◽  
Brahim Bouchrif ◽  
Noureddine Dersi ◽  
Jean David Perrier Gros Claude ◽  
Hamid Amarouch ◽  
...  

Introduction: Extended-spectrum beta-lactamase- (ESBL)-producing Escherichia coli are an increasingly significant cause of community-acquired infection worldwide. The aim of this study was to assess the prevalence of ESBL-producing E. coli in a community, to analyze the relationship between strains studied, and to characterize the ESBL genes involved in this resistance. Methodology: ESBL production was detected by the double disk synergy test. Genes encoding ESBLs (blaTEM, blaCTM, blaSHV) were identified by PCR and DNA sequencing. Conjugation experiments were performed to check the transferability of antibiotic resistance genes. Strain inter-relationships were studied by pulsed field gel electrophoresis. Results: Seven ESBL-producing E. coli were identified among the 535 E. coli isolates. Most of them expressed a CTX-M enzyme (6/7) with a predominance of CTX-M-15 (6/6). Two strains possessed TEM in combination with CTX-M-15 or SHV-5.  Plasmid content and gene transfer analysis showed that resistance genes were carried by high molecular weight conjugative plasmids. PFGE analysis showed that the strains were not clonal. Conclusions: ESBL-producing E. coli from urinary tract infections in Casablanca belong to different clones and carry mobile beta-lactamase genes.  It is therefore essential to monitor the epidemiology of ESBLs in E. coli and related organisms locally to effectively combat resistance.


Author(s):  
Méril Massot ◽  
Pierre Châtre ◽  
Bénédicte Condamine ◽  
Véronique Métayer ◽  
Olivier Clermont ◽  
...  

Intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over six months. We characterized the bacterial clones and plasmids carrying bla ESBL genes with a combination of genotyping methods, whole genome sequencing and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [ bla CTX-M-1 (64.7%), bla CTX-M -14 (33.5%) or bla CTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and bla CTX-M -carrying plasmids, few bla CTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario ‘clone vs. plasmid spread’ depended on the farm. Thus, epistatic interactions between resistance genes, plasmids and bacterial clones contribute to optimize fitness in specific environments. Importance The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum β-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of bla CTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.


2018 ◽  
Vol 81 (8) ◽  
pp. 1339-1345 ◽  
Author(s):  
KAFEEL AHMAD ◽  
FARYAL KHATTAK ◽  
AMJAD ALI ◽  
SHAISTA RAHAT ◽  
SHAZIA NOOR ◽  
...  

ABSTRACT We report the prevalence of extended-spectrum β-lactamases and carbapenemases in Escherichia coli isolated from retail chicken in Peshawar, Pakistan. One hundred E. coli isolates were recovered from retail chicken. Antibiotic susceptibility testing was carried out against ampicillin, chloramphenicol, kanamycin, nalidixic acid, cephalothin, gentamicin, sulfamethoxazole-trimethoprim, and streptomycin. Phenotypic detection of β-lactamase production was analyzed through double disc synergy test using the antibiotics amoxicillin-clavulanate, cefotaxime, ceftazidime, cefepime, and aztreonam. Fifty multidrug-resistant isolates were screened for detection of sul1, aadA, cmlA, int, blaTEM, blaSHV, blaCTX-M, blaOXA-10, blaVIM, blaIMP, and blaNDM-1 genes. Resistance to ampicillin, nalidixic acid, kanamycin, streptomycin, cephalothin, sulfamethoxazole-trimethoprim, gentamicin, cefotaxime, ceftazidime, aztreonam, cefepime, amoxicillin-clavulanate, and chloramphenicol was 92, 91, 84, 73, 70, 67, 53, 48, 40, 39, 37, 36, and 23% respectively. Prevalence of sul1, aadA, cmlA, int, blaTEM, blaCTX-M, blaIMP, and blaNDM-1 was 78% (n = 39), 76% (n = 38), 20% (n = 10), 90% (n = 45), 74% (n = 37), 94% (n = 47), 22% (n = 11), and 4% (n = 2), respectively. blaSHV, blaOXA-10, and blaVIM were not detected. The coexistence of multiple antibiotic resistance genes in multidrug-resistant strains of E. coli is alarming. Hence, robust surveillance strategies should be developed with a focus on controlling the spread of antibiotic resistance genes via the food chain.


2019 ◽  
Vol 79 (8) ◽  
pp. 1550-1560 ◽  
Author(s):  
Anne-Laure Vivant ◽  
Catherine Boutin ◽  
Stéphanie Prost-Boucle ◽  
Sandrine Papias ◽  
Christine Ziebal ◽  
...  

Abstract Free water surface constructed wetlands (FWS CW) are efficient technologies to limit the transfer of antibiotic resistant bacteria (ARB) originating from urban effluents into the aquatic environment. However, the decrease in ARB from inflow to outflow through the FWS CW may be explained by their transfer from the water body to the sediment. To investigate the behavior of ARB in the sediment of a FWS CW, we inoculated three microcosms with two strains of extended-spectrum beta-lactamase producing Escherichia coli (ESBL E. coli) belonging to two genotypes. Microcosms were composed of two sediments collected at two locations of an FWS CW from which the strains were isolated. Phragmites were planted in one of the microcosms. The survival curves of the two strains were close regardless of the genotype and the type of sediment. After a rapid decline, both strains were able to survive at low level in the sediments for 50 days. Their fate was not affected by the presence of phragmites. Changes in the bla content and antibiotic resistance of the inoculated strains were observed after three weeks of incubation, indicating that FWS CW sediments are favorable environments for spread of antibiotic resistance genes and for the acquisition of new antibiotic resistance.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Sahar Besharati Zadeh ◽  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari ◽  
Ahmad Farajzadeh Sheikh

Background: A major problem in the treatment of the infectious diseases healthcare centers is extended-spectrum beta-lactamase (ESBL)-producing bacteria. Objectives: The aim of present study was to identify the antibiotic sensitivity pattern and prevalence of the blaCTX, blaTEM, and blaSHV genes in Escherichia coli and Klebsiella pneumoniae strains. Methods: In this study, E. coli and K. pneumoniae specimens were collected in Shushtar hospitals, Khuzestan (southwest Iran), from March to October 2015. Sensitivity antibiotic pattern performed by disc diffusion method. Double disc synergy test (DDST) done for identifying ESBLs isolates and PCR for blaTEM, blaSHV, and blaCTX-M genes. Results: One hundred E. coli and 30 K. pneumoniae isolates were collected from different specimens. The highest rates of antibiotic resistance related to cefotaxime and aztreonam in E. coli and K. pneumoniae. ESBL-harboring K. pneumoniae and E. coli were 13.5 and 28%, respectively. Overall, bla TEM was the most prevalent ESBL gene. Conclusions: In this study, the rate of antibiotic resistance was high, and due to the carrying of coding genes on mobile genetic elements and the ability of these elements to carry genes that create resistance to other antibiotic families, identification and isolation of these isolates are essential to find effective antibiotics and eliminate the infection.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Bo Yu ◽  
Yanan Zhang ◽  
Li Yang ◽  
Jinge Xu ◽  
Shijin Bu

This study was carried out to investigate the resistance phenotypes and resistance genes of Escherichia coli from swine in Guizhou, China. A total of 47 E. coli strains isolated between 2013 and 2018 were tested using the Kirby–Bauer (K–B) method to verify their resistance to 19 common clinical antimicrobials. Five classes consisting of 29 resistance genes were detected using polymerase chain reaction. The status regarding extended-spectrum β-lactamase (ESBL) and the relationship between ESBL CTX-M-type β-lactamase genes and plasmid-mediated quinolone resistance (PMQR) genes were analysed. A total of 46 strains (97.9%) were found to be multidrug resistant. Amongst them, 27 strains (57.4%) were resistant to more than eight antimicrobials, and the maximum number of resistant antimicrobial agents was 16. Twenty antibiotic resistance genes were detected, including six β-lactamase genes blaTEM (74.5%), blaCTX-M-9G (29.8%), blaDHA (17.0%), blaCTX-M-1G (10.6%), blaSHV (8.5%), blaOXA (2.1%), five aminoglycoside-modifying enzyme genes aac(3′)-IV (93.6%), aadA1 (78.7%), aadA2 (76.6%), aac(3′)-II c (55.3%), aac(6′)-Ib (2.1%) and five amphenicol resistance genes floR (70.2%), cmlA (53.2%), cat2 (10.6%), cat1 (6.4%), cmlB (2.1%), three PMQR genes qnrS (55.3%), oqxA (53.2%), qepA (27.7%) and polypeptide resistance gene mcr-1 (40.4%). The detection rate of ESBL-positive strains was 80.9% (38/47) and ESBL TEM-type was the most abundant ESBLs. The percentage of the PMQR gene in blaCTX-M-positive strains was high, and the detection rate of blaCTX-M-9G was the highest in CTX-M type. It is clear that multiple drug resistant E. coli is common in healthy swine in this study. Extended-spectrum β-lactamase is very abundant in the E. coli strains isolated from swine and most of them are multiple compound genotypes.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 259 ◽  
Author(s):  
Rosa Capita ◽  
Jorge Cordero ◽  
Diana Molina-González ◽  
Gilberto Igrejas ◽  
Patrícia Poeta ◽  
...  

Monitoring resistance to antibiotics in wild animals may assist in evaluating tendencies in the evolution of this major public health problem. The aims of this research work were to determine the patterns of antibiotic resistance in Escherichia coli isolates from the meat of wild or domestically reared pigeons from Spain, to detect the presence of virulence and antibiotic resistance genes, and to carry out a phylogenetic classification of the isolates. Of the 37 E. coli strains tested, 32.43% of them belonged to the B2 phylogenetic group, which is often implicated in extra-intestinal infections. None of the strains showed extended-spectrum beta-lactamase activity. All the isolates presented resistance or reduced susceptibility to two or more antibiotics, with high levels of resistance to β-lactams, aminoglycosides and tetracycline. Ten resistance genes were detected, the most frequent of which were ampC, conferring resistance to ampicillin and aadA, conferring resistance to streptomycin. In total, 97.30% of the strains carried virulence factors (between one and five). The strains from pigeons reared in captivity harboured higher average numbers of resistance and virulence genes than isolates from wild pigeons. Pigeon meat is an important reservoir of E. coli with genes for antibiotic resistance and virulence having the potential to cause disease in humans.


Author(s):  
S. C. Tama ◽  
Y. B. Ngwai ◽  
G. R. I. Pennap ◽  
I. H. Nkene ◽  
R. H. Abimiku ◽  
...  

Aims: This study investigated the antimicrobial resistance profile and extended spectrum beta-lactamase resistance genes of Escherichia coli isolated from droppings of from selected poultry farms in Nasarawa, Nigeria. Study Design: Investigative Place and Duration of Study: Department of Microbiology, Nasarawa State University, Keffi, between November 2019 and February 2020. Methodology: A total of 90 samples from poultry droppings were collected from selected farms. Escherichia coli was isolated from the samples using standard cultural and microbiological methods. Antibiotic susceptibility testing and minimum inhibitory concentrations were evaluated as described by the Clinical and Laboratory Standards Institute (CLSI). The detection of extended-spectrum beta-lactamase (ESBL) production in E. coli isolates was carried out using double disc synergy test.  In addition, molecular detection of ESBL genes was carried out using Polymerase Chain Reaction (PCR) method. Results: The prevalence of E. coli was 100%. Antibiotic resistances of E. coli were recorded as follows: streptomycin (S: 94.4%), sulphamethoxazole / trimethoprim (SXT: 90.0%), ampicillin (AMP: 88.9%), gentamicin (CN: 68.9%), amoxicillin/clavulanic acid (AMC: 55.6%), ciprofloxacin (CIP: 41.1%), cefoxitin (FOX: 35.6%), ceftazidime (CAZ: 34.4%), cefotaxime (CTX: 22.2%), and imipenems (IPM: 17.8%). The most common antibiotic resistant resistance phenotype was AMP-CTX-CAZ-CIP-CN (11.1%). Multiple antibiotic resistance (MAR) was observed in 97.7% (88/90) of the isolates, with the common MAR index being 0.5 (33.3%). Twenty five of the thirty beta-lactam resistant isolates (83.3%) were confirmed ESBL producers. The 25 ESBL positive isolates carried bla genes as follows: blaTEM (11/25, 44.0%) and blaCTX-M (18/25, 72.0%). blaSHV was not found in any isolate. Conclusion: E. coli isolated from the droppings of selected poultry farms in Nasarawa were less resistant to imipenem, cefotaxime, ceftazidime and cefoxitin in the study location. This implies that the antibiotics are useful in the treatment of infection caused by E. coli. Also, ESBL-positive E. coli isolates harbored ESBL genes, with blaCTX-M as the most common.


2021 ◽  
Author(s):  
O.R. Vinodhkumar ◽  
M. Karikalan ◽  
S. Ilayaraja ◽  
Arun A Sha ◽  
B.R. Singh ◽  
...  

Abstract The study reports the MDR, ESBL, and NDM producing Escherichia coli (CRE) isolated from the rescued sloth bear (Melursus ursinus), India. The faecal samples of adult rescued sloth bear (n=21) were collected from a rescue center located in India during 2015-2016 and processed for isolation and antibacterial susceptibility pattern of E. coli. 45E. coli isolates were recovered, and on phenotypic screening, 23 were MDR, 17 were ESBL producers, and five were carbapenem-resistant (CR). The MDR isolates carried beta-lactamase, chloramphenicol, aminoglycosides, tetracycline, fluroquinone, and sulphadimidine resistance genes. All the phenotypic ESBL producing isolates had blaCTX-M genes. On genotypic screening, three CRE (60.0 %, 3/5) were positive for blaNDM carbapenemase gene. Efflux pump-mediated carbapenem resistance was noticed in two CRE isolates (40.0 %, 2/5).The CRE also isolates co-harbored AMR genes like blaTEM-1, blaAmpC, qnrA, qnrB, qnrS, tetA, tetB and sulI. Virulence screening of the resistant isolates revealed the presence of Stx1, Stx2, eae, hlyA genes.Plasmid incompatibility (Inc) typesof three NDM positive isolates revealed that two isolates blaNDM-5 gene on Incl1 an one isolate on IncF plasmid. Apart from NDM genes, the plasmids also carried tetracycline, beta-lactamase and quinolone resistance genes. The plasmid multilocus sequence typing (pMLST) of the E. coli Incl1 plasmid showed the Sequence Type (ST) 297.This appears to be the first report of multi-drug resistant, extended spectrum beta-lactamase (ESBL) producing and blaNDM-5geneson Incl1 and IncF plasmids in rescued sloth bear.


Sign in / Sign up

Export Citation Format

Share Document