scholarly journals Tunable Transcription Factor Library for Robust Quantification of Gene Expression Dynamics in E. coli

2021 ◽  
Author(s):  
Vinuselvi Parisutham ◽  
Shivani Chhabra ◽  
Zulfikar Ali ◽  
Robert C Brewster

Predicting the quantitative regulatory function of a TF based on factors such as binding sequence, binding location and promoter type is not possible. The interconnected nature of gene networks and the difficulty in tuning individual TF concentrations makes the isolated study of TF function challenging. Here we present a library of E. coli strains designed to allow for precise control of the concentration of individual TFs enabling the study of the role of TF concentration on physiology and regulation. We demonstrate the usefulness of this resource by measuring the regulatory function of the zinc responsive TF, ZntR and the paralogous TF pair, GalR/GalS. For ZntR, we find that zinc alters ZntR regulatory function in a way that enables activation of the regulated gene to be robust with respect to ZntR concentration. For GalR and GalS, we are able to demonstrate that these parlogous TFs have fundamentally distinct regulatory roles beyond differences in binding affinity.

2021 ◽  
Author(s):  
Md Zulfikar Ali ◽  
Robert C. Brewster

Gene networks typically involve the regulatory control of multiple genes with related function. This connectivity enables correlated control of the levels and timing of gene expression. Here we study how the timing of gene expression in networks can be encoded in the regulatory DNA of a gene. Using stochastic simulations, we examine the role of binding affinity, TF regulatory function and network size in controlling the mean first-passage time to reach a fixed fraction of steady-state expression for both an auto-regulated TF gene and a target gene. We also examine how the variability in first-passage time depends on these factors. We find that both network size and binding affinity can dramatically speed up or slow down the response time of network genes, in some cases predicting more than a 100-fold change compared to constitutive expression. Furthermore, these factors can also significantly impact the fidelity of this response. Importantly, these effects do not occur at "extremes" of network size or binding affinity, but rather in an intermediate window of either quantity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 23.2-24
Author(s):  
Y. P. Tsao ◽  
F. Y. Tseng ◽  
C. W. Chao ◽  
M. H. Chen ◽  
S. T. Chen

Background:Systemic lupus erythematous (SLE) is a systemic autoimmune disease with diverse etiological factors. It was recognized that interferon (IFN) signature involved in the progress of SLE. NLRP12 (NOD-like receptor family (NLR) pyrin domain containing 12) is a pyrin containing NLR protein that we had linked its new biological function to the cross-regulation of Toll like receptor (TLRs) and Rig-I like receptor (RIG-I) pathways. NLPR12 acts as an innate immune check-point in regulating type I IFNs expression during TLRs and RIG-I activation. The importance of NLRP12 in lupus disease activity remained to be elucidated.Objectives:To clarify the role of NLRP12 in regulating the interferon signature.Methods:Peripheral blood mononuclear cells (PBMCs) were collected from SLE patients and healthy donors for analysis of NLRP12 and IFN-α gene expression by RT-QPCR. PBMCs were applied for Chromatin immuneprecipitation (ChIP) assay and electrical mobility shift assay (EMSA) to determine the putative transcription factor that regulates NLRP12 expression. An involvement of epigenetic regulation of NLRP12 expression in SLE patients was also analyzed. Bone marrow derived dendritic cells (BMDCs) were collected from wild type mouse and Nlrp12 knocked-out mice. Another CD14+ monocytes were isolated from 10 cases of lupus patients and 8 cases of healthy control, following by stimulating different type of nucleic acids, and IFN-α and IL-6 were measured with ELISA assay. CD14+ monocytes in lupus patients were also pre-treated with IFNAR2 antibody for further nucleic acid stimulation. Two mice models were applied for evaluation the role of Nlrp12: intraperitoneal injection of TMPD (2,6,10,14-tetramethylpentadecane, or pristane) in C57BL/6 mice and Faslpr mice. Both models were conducted with and without Nlrp12 knockout.Results:NLRP12 expression was significantly lower in PBMC isolated from SLE patients compared to healthy donors. The inverse correlation was observed in NLRP12 and IFNA gene expression as well as NLRP12 expression and amount of double-stranded DNA autoantibody in SLE patients. NLRP12 expression showed negative correlations with IFN-α treatment, as well as herpes simplex virus-1 (HSV-1) infection. Results from ChIP and EMSA analysis indicated a potential transcription factor 1 (TF-1) regulating NLRP12 promoter activity. TF-1 lead to transcriptional suppression of NLRP12 in SLE PBMC, and it was gradually induced after IFN treatment. Recruitment of TF-1 to NLRP12 promoter in SLE PBMC compared to the healthy PBMC was detected, and increased when treating with IFN. Human CD14+ monocytes collected from lupus and healthy control stimulating with different type of nucleic acids revealing significant increasing level of IFN-α and IL-6 in lupus patients. Among animal models, both pristine induced mice and Faslpr mice revealed increasing autoantibodies production and severity of glomerulonephritis in Nlrp12-/- group in comparison with Nlrp12+/+ ones, indicating the role of NLRP12 in maintaining positive interferon signature as well as disease activity.Conclusion:Expression level of NLRP1.2 has been demonstrated to be a biomarker of disease activity in SLE patients. The NLRP12 was involved in the interferon signature, which was also negatively regulated by TF-1. Both clinical samples and animal models revealed NLRP12 in maintaining the positive interferon signature, indicating the possible role of exacerbating factor for lupus disease activity.Disclosure of Interests:None declared


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2013 ◽  
Vol 368 (1632) ◽  
pp. 20130018 ◽  
Author(s):  
Andrea I. Ramos ◽  
Scott Barolo

In the era of functional genomics, the role of transcription factor (TF)–DNA binding affinity is of increasing interest: for example, it has recently been proposed that low-affinity genomic binding events, though frequent, are functionally irrelevant. Here, we investigate the role of binding site affinity in the transcriptional interpretation of Hedgehog (Hh) morphogen gradients . We noted that enhancers of several Hh-responsive Drosophila genes have low predicted affinity for Ci, the Gli family TF that transduces Hh signalling in the fly. Contrary to our initial hypothesis, improving the affinity of Ci/Gli sites in enhancers of dpp , wingless and stripe , by transplanting optimal sites from the patched gene, did not result in ectopic responses to Hh signalling. Instead, we found that these enhancers require low-affinity binding sites for normal activation in regions of relatively low signalling. When Ci/Gli sites in these enhancers were altered to improve their binding affinity, we observed patterning defects in the transcriptional response that are consistent with a switch from Ci-mediated activation to Ci-mediated repression. Synthetic transgenic reporters containing isolated Ci/Gli sites confirmed this finding in imaginal discs. We propose that the requirement for gene activation by Ci in the regions of low-to-moderate Hh signalling results in evolutionary pressure favouring weak binding sites in enhancers of certain Hh target genes.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jessie Colin ◽  
Domenico Libri ◽  
Odil Porrua

Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs) are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs). CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.


2019 ◽  
Author(s):  
Joanna Mitchelmore ◽  
Nastasiya Grinberg ◽  
Chris Wallace ◽  
Mikhail Spivakov

AbstractIdentifying DNA cis-regulatory modules (CRMs) that control the expression of specific genes is crucial for deciphering the logic of transcriptional control. Natural genetic variation can point to the possible gene regulatory function of specific sequences through their allelic associations with gene expression. However, comprehensive identification of causal regulatory sequences in brute-force association testing without incorporating prior knowledge is challenging due to limited statistical power and effects of linkage disequilibrium. Sequence variants affecting transcription factor (TF) binding at CRMs have a strong potential to influence gene regulatory function, which provides a motivation for prioritising such variants in association testing. Here, we generate an atlas of CRMs showing predicted allelic variation in TF binding affinity in human lymphoblastoid cell lines (LCLs) and test their association with the expression of their putative target genes inferred from Promoter Capture Hi-C and immediate linear proximity. We reveal over 1300 CRM TF-binding variants associated with target gene expression, the majority of them undetected with standard association testing. A large proportion of CRMs showing associations with the expression of genes they contact in 3D localise to the promoter regions of other genes, supporting the notion of ‘epromoters’: dual-action CRMs with promoter and distal enhancer activity.


2016 ◽  
Author(s):  
Dianbo Liu ◽  
Luca Albergante ◽  
Timothy J Newman

AbstractUsing a combination of mathematical modelling, statistical simulation and large-scale data analysis we study the properties of linear regulatory chains (LRCs) within gene regulatory networks (GRNs). Our modelling indicates that downstream genes embedded within LRCs are highly insulated from the variation in expression of upstream genes, and thus LRCs act as attenuators. This observation implies a progressively weaker functionality of LRCs as their length increases. When analysing the preponderance of LRCs in the GRNs of E. coli K12 and several other organisms, we find that very long LRCs are essentially absent. In both E. coli and M. tuberculosis we find that four-gene LRCs are intimately linked to identical feedback loops that are involved in potentially chaotic stress response, indicating that the dynamics of these potentially destabilising motifs are strongly restrained under homeostatic conditions. The same relationship is observed in a human cancer cell line (K562), and we postulate that four-gene LRCs act as “universal attenuators”. These findings suggest a role for long LRCs in dampening variation in gene expression, thereby protecting cell identity, and in controlling dramatic shifts in cell-wide gene expression through inhibiting chaos-generating motifs.In briefWe present a general principle that linear regulatory chains exponentially attenuate the range of expression in gene regulatory networks. The discovery of a universal interplay between linear regulatory chains and genetic feedback loops in microorganisms and a human cancer cell line is analysed and discussed.HighlightsWithin gene networks, linear regulatory chains act as exponentially strong attenuators of upstream variationBecause of their exponential behaviour, linear regulatory chains beyond a few genes provide no additional functionality and are rarely observed in gene networks across a range of different organismsNovel interactions between four-gene linear regulatory chains and feedback loops were discovered in E. coli, M. tuberculosis and human cancer cells, suggesting a universal mechanism of control.


Sign in / Sign up

Export Citation Format

Share Document