scholarly journals Cryptic Transcription and Early Termination in the Control of Gene Expression

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jessie Colin ◽  
Domenico Libri ◽  
Odil Porrua

Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs) are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs). CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna S. E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states and promises to improve our understanding of genetic regulation across tissues in both health and disease. Results While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimize sc-eQTL mapping. Here, we evaluate the role of different normalization and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches. Conclusion We provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2009 ◽  
Vol 191 (11) ◽  
pp. 3504-3516 ◽  
Author(s):  
Ryan S. Mueller ◽  
Sinem Beyhan ◽  
Simran G. Saini ◽  
Fitnat H. Yildiz ◽  
Douglas H. Bartlett

ABSTRACT Indole has been proposed to act as an extracellular signal molecule influencing biofilm formation in a range of bacteria. For this study, the role of indole in Vibrio cholerae biofilm formation was examined. It was shown that indole activates genes involved in vibrio polysaccharide (VPS) production, which is essential for V. cholerae biofilm formation. In addition to activating these genes, it was determined using microarrays that indole influences the expression of many other genes, including those involved in motility, protozoan grazing resistance, iron utilization, and ion transport. A transposon mutagenesis screen revealed additional components of the indole-VPS regulatory circuitry. The indole signaling cascade includes the DksA protein along with known regulators of VPS production, VpsR and CdgA. A working model is presented in which global control of gene expression by indole is coordinated through σ54 and associated transcriptional regulators.


2020 ◽  
Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Kristine B. Arnvig

ABSTRACTAlmost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of post-transcriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA, F6, and show it to be dependent on SigF for expression and significantly induced during in vitro starvation and in a mouse model of infection. However, we found no evidence of attenuation of a ΔF6 strain within the first 20 weeks of infection. A further exploration of F6 using in vitro models of infection suggests a role for F6 as a highly specific regulator of the heat shock repressor, HrcA. Our results point towards a role for F6 during periods of low metabolic activity similar to cold shock and associated with nutrient starvation such as that found in human granulomas in later stages of infection.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Chae-Myeong Ha ◽  
Adam R Wende

Heart disease is the number one cause of death in developed countries. Metabolic diseases influence the severity of heart disease linked to risk factors which are thought to alter epigenetic mechanisms. Pyruvate dehydrogenase (PDH) kinases (PDK), which phosphorylate and reduce the activity of PDH the nexus of glucose oxidation and fatty acid oxidation are sensitive to metabolic status. Four isozymes of PDK (PDK1-4) exist with PDK2 and PDK4 as the major regulators in cardiac tissue. Owing to the role of PDH in regulating pyruvate to acetyl-CoA, we hypothesized that PDK inhibition may regulate protein acetylation through increasing acetyl-CoA because of PDH activation leading to post-translational modifications both directly to proteins in metabolic pathways as well as to histones associated with the genes encoding them. To test this, we utilized PDK2 germline knockout mice (P2KO), PDK4 germline knockout mice (P4KO), and PDK2 and PDK4 double knockout (DKO) mice for molecular analysis. Our results identify a novel increase in whole-cell protein acetylation in P2KO left ventricle tissue (LV). However, protein acetylation in P4KO LV was not changed compared to WT mice. The most robust protein acetylation was observed in the DKO LV. Furthermore, when we explored sub-cellular distribution of protein acetylation, the greatest increases were found on cytoplasmic proteins, with moderate changes in mitochondrial proteins. We also found PDK2 ablation induces histone H3 acetylation, which may also lead to changes in gene expression. Moreover, this protein acetylation in P2KO and DKO was not seen in other tissues examined (e.g., liver, skeletal muscle). The hyperacetylation is robust in male LV compared to female LV. In conclusion, our study supports a novel protein acetylation mechanism that is both tissue and PDK isozyme specific highlighting the role of PDK2, which is relatively understudied compared to PDK4 in heart disease. Further study will evaluate if the hyperacetylation has a beneficial effect in various heart disease settings as well as identify the impact on changes in gene expression. This study supports PDK isozyme-specific inhibition strategies will be required to develop therapeutic targets of cardiovascular disease with metabolic inflexibility.


2019 ◽  
Vol 20 (12) ◽  
pp. 3073 ◽  
Author(s):  
Ana Dienstbier ◽  
Fabian Amman ◽  
Daniel Štipl ◽  
Denisa Petráčková ◽  
Branislav Večerek

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


2019 ◽  
Vol 116 (20) ◽  
pp. 9893-9902 ◽  
Author(s):  
Christopher M. Uyehara ◽  
Daniel J. McKay

The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.


Sign in / Sign up

Export Citation Format

Share Document