scholarly journals Effects of food availability cycles on phase and period of activity/rest rhythm in Drosophila melanogaster

2021 ◽  
Author(s):  
Viveka Jagdish Singh ◽  
Sheetal Potdar ◽  
Vasu Sheeba

Foraging and feeding are indispensable for survival and their timing depends not only on the metabolic state of the animal but also on the availability of food resources in their environment. Since both these aspects are subject to change over time, these behaviours exhibit rhythmicity in occurrence. As the locomotor activity of an organism is related to its disposition to acquire food, and peak feeding in fruit flies has been shown to occur at a particular time of the day, we asked if cyclic food availability can entrain their rhythmic activity. By subjecting flies to cyclic food availability i.e., feeding/starvation (FS) cycles, we provided food cues contrasting to the preferred activity times and observed if this imposed cycling in food availability could entrain the activity/rest rhythm. We found that phase control, which is a property integral to entrainment, was not achieved despite increasing starvation duration of FS cycles (FS12:12, FS10:14 and FS8:16). We also found that flies subjected to T21 and T26 FS cycles were unable to match period of the activity rhythm to short or long T-cycles. Taken together these results show that external food availability cycles do not entrain the activity/rest rhythm of fruit flies. However, we find that starvation induced hyperactivity causes masking which results in phase changes. Additionally, T-cycle experiments resulted in minor period changes during FS treatment. These findings highlight that food cyclicity by itself may not be a potent zeitgeber but may act in unison with other abiotic factors like light and temperature to help flies time their activity appropriately.

Evolution ◽  
2020 ◽  
Author(s):  
Eevi Savola ◽  
Clara Montgomery ◽  
Fergal M. Waldron ◽  
Katy M. Monteith ◽  
Pedro Vale ◽  
...  

Author(s):  
A. K. Sarbhoy

Abstract A description is provided for Rhizopus stolonifer. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On fruits: papaya, plum, strawberry, sweet potato, cotton, groundnuts and in rhizosphere soil of various plants, soil and decaying leaves. DISEASE: Causing fruit rot of plum, Jak fruit (Artocarpus integrifolia[Artocarpus integer]), strawberry ('leak'), peach and a rot of sweet potato (Ipomoea batatas) and cotton bolls. GEOGRAPHICAL DISTRIBUTION: World-wide. TRANSMISSION: Air-borne and also by fruit flies, Drosophila melanogaster, associated with decaying fruit (RAM 43, 576).


2021 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
O.O. Dosumu ◽  
◽  
E.N. Akang ◽  
O.K. Idowu ◽  
G.J. Adeyemi

Background: Parkinson's disease (PD) is a multifactorial neurodegenerative disease with pathogenic mechanisms traceable to oxidative damage and mitochondrial dysfunction. Rotenone, a chemical compound commonly found in pesticides, has been found to inhibit mitochondrial complex-I and initiate PD-like symptoms in mammals and several invertebrates. Virgin Coconut Oil (VCNO) obtained from the coconut fruit has been found to possess anti-oxidative and anti-inflammatory properties. Objectives: The present study evaluated the effect of VCNO on rotenone-induced Parkinsonism in fruit flies- Drosophila melanogaster (D. melanogaster). Methods: Canton special (CS) strains of D. melanogaster, aged between 1 to 3 days were orally exposed for 7 days to 0, 250, 500 and 750 μM rotenone diet for toxicity assay, and 0, 2.5, 5 and 10 % w/w VCNO diet for longevity assay. Thereafter, 5 % VCNO diet was selected for evaluation against 500 μM rotenone. Subsequently, behavioural test (negative geotaxis), markers for redox status and enzyme activities were evaluated. Results: The results showed that rotenone induced toxicity in the flies, while VCNO increased the lifespan of D. melanogaster in a dose-dependent manner. In addition, VCNO ameliorated rotenone-induced locomotor deficits, elevated MDA, as well as the depleted GSH levels. It also mitigated the inhibited activities of SOD, CAT and ATPase in the flies. Conclusions: VCNO protected D. melanogaster against rotenone-induced toxicity by extending longevity, preventing locomotor deficits and reducing oxidative stress.


2005 ◽  
Vol 83 (2) ◽  
pp. 368-371 ◽  
Author(s):  
Mark J Fitzpatrick ◽  
Evelyn Szewczyk

Denticles are small projections on the underside of larval fruit flies that are used to grip the substrate while crawling. Previous studies have shown that (i) there is natural variation in denticle number and pattern between Drosophila melanogaster (Meigen, 1830) and several closely related species and (ii) mutations affecting denticle morphology have negative effects on locomotory performance. We hypothesized that there would be a correlation between denticle number and locomotory performance within populations of D. melanogaster. Despite finding considerable variation in denticle number, we found no correlation between denticle number and three measurements of larval locomotion: speed, acceleration, and absolute turning rate.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-20
Author(s):  
Indrikis A. Krams ◽  
Ronalds Krams ◽  
Priit Jõers ◽  
Māris Munkevics ◽  
Giedrius Trakimas ◽  
...  

Abstract The elemental composition of organisms belongs to a suite of functional traits that change during development in response to environmental conditions. However, associations between adaptive variations in developmental speed and elemental body composition are not well understood. We compared body mass, elemental body composition, food uptake and fat metabolism of Drosophila melanogaster male fruit flies in relation to their larval development speed. Slowly developing flies had higher body carbon concentration than rapidly developing and intermediate flies. Rapidly developing flies had the highest body nitrogen concentration, while slowly developing flies had higher body nitrogen levels than flies with intermediate speed of development. The carbon-to-nitrogen ratio was therefore lower in rapidly developing flies than in slow and intermediate flies. We also had a group of flies grown individually and their body mass and elemental body composition were similar to those of rapidly developing individuals grown in groups. This suggests that rapid growth is not suppressed by stress. Feeding rates were lowest in the slowly developing flies. The amount of triacylglycerides was highest in the flies with intermediate developmental speed which optimizes development under many climatic conditions. Although low food intake slows down developmental speed and the accumulation of body fat reserves in slowly developing flies, their phenotype conceivably facilitates survival under higher stochasticity of their environments. Rapidly developing flies grew with less emphasis on storage build-up. Overall, this study shoes that a combination of bet-hedging, adaptive tracking and developmental plasticity enables fruit flies to respond adaptively to environmental uncertainty.


2013 ◽  
Vol 110 (22) ◽  
pp. 8984-8989 ◽  
Author(s):  
J. De ◽  
V. Varma ◽  
S. Saha ◽  
V. Sheeba ◽  
V. K. Sharma

2020 ◽  
Vol 8 (12) ◽  
pp. 1893
Author(s):  
Mahasweta Saha ◽  
Shawn Dove ◽  
Florian Weinberger

Terrestrial plants are known to “garden” the microbiota of their rhizosphere via released metabolites (that can attract beneficial microbes and deter pathogenic microbes). Such a “gardening” capacity is also known to be dynamic in plants. Although microbial “gardening” has been recently demonstrated for seaweeds, we do not know whether this capacity is a dynamic property in any aquatic flora like in terrestrial plants. Here, we tested the dynamic microbial “gardening” capacity of seaweeds using the model invasive red seaweed Agarophyton vermiculophyllum. Following an initial extraction of surface-associated metabolites (immediately after field collection), we conducted a long-term mesocosm experiment for 5 months to test the effect of two different salinities (low = 8.5 and medium = 16.5) on the microbial “gardening” capacity of the alga over time. We tested “gardening” capacity of A. vermiculophyllum originating from two different salinity levels (after 5 months treatments) in settlement assays against three disease causing pathogenic bacteria and seven protective bacteria. We also compared the capacity of the alga with field-collected samples. Abiotic factors like low salinity significantly increased the capacity of the alga to deter colonization by pathogenic bacteria while medium salinity significantly decreased the capacity of the alga over time when compared to field-collected samples. However, capacity to attract beneficial bacteria significantly decreased at both tested salinity levels when compared to field-collected samples. Dynamic microbial “gardening” capacity of a seaweed to attract beneficial bacteria and deter pathogenic bacteria is demonstrated for the first time. Such a dynamic capacity as found in the current study could also be applicable to other aquatic host–microbe interactions. Our results may provide an attractive direction of research towards manipulation of salinity and other abiotic factors leading to better defended A. vermiculophyllum towards pathogenic bacteria thereby enhancing sustained production of healthy A. vermiculophyllum in farms.


Sign in / Sign up

Export Citation Format

Share Document