Virgin Coconut (Cocos nucifera) Oil Attenuates Rotenone-Induced Toxicity in Fruit Flies (Drosophila melanogaster)

2021 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
O.O. Dosumu ◽  
◽  
E.N. Akang ◽  
O.K. Idowu ◽  
G.J. Adeyemi

Background: Parkinson's disease (PD) is a multifactorial neurodegenerative disease with pathogenic mechanisms traceable to oxidative damage and mitochondrial dysfunction. Rotenone, a chemical compound commonly found in pesticides, has been found to inhibit mitochondrial complex-I and initiate PD-like symptoms in mammals and several invertebrates. Virgin Coconut Oil (VCNO) obtained from the coconut fruit has been found to possess anti-oxidative and anti-inflammatory properties. Objectives: The present study evaluated the effect of VCNO on rotenone-induced Parkinsonism in fruit flies- Drosophila melanogaster (D. melanogaster). Methods: Canton special (CS) strains of D. melanogaster, aged between 1 to 3 days were orally exposed for 7 days to 0, 250, 500 and 750 μM rotenone diet for toxicity assay, and 0, 2.5, 5 and 10 % w/w VCNO diet for longevity assay. Thereafter, 5 % VCNO diet was selected for evaluation against 500 μM rotenone. Subsequently, behavioural test (negative geotaxis), markers for redox status and enzyme activities were evaluated. Results: The results showed that rotenone induced toxicity in the flies, while VCNO increased the lifespan of D. melanogaster in a dose-dependent manner. In addition, VCNO ameliorated rotenone-induced locomotor deficits, elevated MDA, as well as the depleted GSH levels. It also mitigated the inhibited activities of SOD, CAT and ATPase in the flies. Conclusions: VCNO protected D. melanogaster against rotenone-induced toxicity by extending longevity, preventing locomotor deficits and reducing oxidative stress.

Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 752-762 ◽  
Author(s):  
Alireza Sameny ◽  
John Locke

Transposable elements are found in the genomes of all eukaryotes and play a critical role in altering gene expression and genome organization. In Drosophila melanogaster, transposable P elements are responsible for the phenomenon of hybrid dysgenesis. KP elements, a deletion-derivative of the complete P element, can suppress this mutagenic effect. KP elements can also silence the expression of certain other P-element-mediated transgenes in a process called P-element-dependent silencing (PDS), which is thought to involve the recruitment of heterochromatin proteins. To explore the mechanism of this silencing, we have mobilized KP elements to create a series of strains that contain single, well-defined KP insertions that show PDS. To understand the quantitative role of KP elements in PDS, these single inserts were combined in a series of crosses to obtain genotypes with zero, one, or two KP elements, from which we could examine the effect of KP gene dose. The extent of PDS in these genotypes was shown to be dose dependent in a logarithmic rather than linear fashion. A logarithmic dose dependency is consistent with the KP products interacting with heterochromatic proteins in a concentration-dependent manner such that two molecules are needed to induce gene silencing.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 284
Author(s):  
Kaeli N. Bryant ◽  
Irene L. G. Newton

Wolbachia pipientis is an intracellular alphaproteobacterium that infects 40%–60% of insect species and is well known for host reproductive manipulations. Although Wolbachia are primarily maternally transmitted, evidence of horizontal transmission can be found in incongruent host–symbiont phylogenies and recent acquisitions of the same Wolbachia strain by distantly related species. Parasitoids and predator–prey interactions may indeed facilitate the transfer of Wolbachia between insect lineages, but it is likely that Wolbachia are acquired via introgression in many cases. Many hypotheses exist to explain Wolbachia prevalence and penetrance, such as nutritional supplementation, protection from parasites, protection from viruses, or direct reproductive parasitism. Using classical genetics, we show that Wolbachia increase recombination in infected lineages across two genomic intervals. This increase in recombination is titer-dependent as the wMelPop variant, which infects at higher load in Drosophila melanogaster, increases recombination 5% more than the wMel variant. In addition, we also show that Spiroplasma poulsonii, another bacterial intracellular symbiont of D. melanogaster, does not induce an increase in recombination. Our results suggest that Wolbachia infection specifically alters its host’s recombination landscape in a dose-dependent manner.


2021 ◽  
Author(s):  
Johnmark Ndinawe ◽  
Hellen W. Kinyi

Abstract ObjectiveAmaranths leaves are rich in ascorbic acid and polyphenol compounds which have antioxidant activity. The aim of this study was to evaluate their in vivo antioxidant activity. The effect of consumption of Amaranth leaf extract on in vivo antioxidant activity, catalase enzyme activity and H2O2 induced oxidative stress in Drosophila melanogaster flies was assessed.ResultsConsumption of Amaranth leaf extract was associated with increased survival on exposure to H202 in a dose dependent manner in Drosophila melanogaster flies.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1209-1220
Author(s):  
E S Belyaeva ◽  
L V Boldyreva ◽  
E I Volkova ◽  
R A Nanayev ◽  
A A Alekseyenko ◽  
...  

Abstract It has been previously shown that the SuUR gene encodes a protein located in intercalary and pericentromeric heterochromatin in Drosophila melanogaster polytene chromosomes. The SuUR mutation suppresses the formation of ectopic contacts and DNA underreplication in polytene chromosomes; SuUR+ in extra doses enhances the expression of these characters. This study demonstrates that heterochromatin-dependent PEV silencing is also influenced by SuUR. The SuUR protein localizes to chromosome regions compacted as a result of PEV; the SuUR mutation suppresses DNA underreplication arising in regions of polytene chromosomes undergoing PEV. The SuUR mutation also suppresses variegation of both adult morphological characters and chromatin compaction observed in rearranged chromosomes. In contrast, SuUR+ in extra doses and its overexpression enhance variegation. Thus, SuUR affects PEV silencing in a dose-dependent manner. However, its effect is expressed weaker than that of the strong modifier Su(var)2-5.


2010 ◽  
Vol 79 (1) ◽  
pp. 439-448 ◽  
Author(s):  
Christina O. Igboin ◽  
Melvin L. Moeschberger ◽  
Ann L. Griffen ◽  
Eugene J. Leys

ABSTRACTPorphyromonas gingivalishas been implicated in the etiology of adult periodontitis. In this study, we examined the viability ofDrosophila melanogasteras a new model for examiningP. gingivalis-host interactions.P. gingivalis(W83) infection ofDrosophilaresulted in a systemic infection that killed in a dose-dependent manner. Differences in the virulence of several clinically prevalentP. gingivalisstrains were observed in theDrosophilakilling model, and the results correlated well with studies in mammalian infection models and human epidemiologic studies.P. gingivalispathobiology inDrosophiladid not result from uncontrolled growth of the bacterium in theDrosophilahemolymph (blood) or overt damage toDrosophilatissues.P. gingivaliskilling ofDrosophilawas multifactorial, involving several bacterial factors that are also involved in virulence in mammals. The results from this study suggest that many aspects ofP. gingivalispathogenesis in mammals are conserved inDrosophila, and thus theDrosophilakilling model should be useful for characterizingP. gingivalis-host interactions and, potentially, polymicrobe-host interactions.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ndinawe Johnmark ◽  
Hellen W. Kinyi

Abstract Objective Amaranths leaves are rich in ascorbic acid and polyphenol compounds which have antioxidant activity. The aim of this study was to evaluate their in vivo antioxidant activity. The effect of consumption of Amaranth leaf extract on in vivo antioxidant activity, catalase enzyme activity and H2O2 induced oxidative stress in Drosophila melanogaster flies was assessed. Results Consumption of Amaranth leaf extract was associated with increased survival on exposure to H2o2 in a dose dependent manner in Drosophila melanogaster flies. The study concludes that the ethanolic extract of Amaranth leaves offer protection against hydrogen peroxide-induced oxidative stress.


2004 ◽  
Vol 383 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Adam SOUTHON ◽  
Richard BURKE ◽  
Melanie NORGATE ◽  
Philip BATTERHAM ◽  
James CAMAKARIS

Copper homoeostasis was investigated in the Drosophila melanogaster S2 cell line to develop an insect model for the study of copper regulation. Real-time PCR studies have demonstrated expression in S2 cells of putative orthologues of human Cu regulatory genes involved in the uptake, transport, sequestration and efflux of Cu. Drosophila orthologues of the mammalian Cu chaperones, ATOX1 (a human orthologue of yeast ATX1), CCS (copper chaperone for superoxide dismutase), COX17 (a human orthologue of yeast COX17), and SCO1 and SCO2, did not significantly respond transcriptionally to increased Cu levels, whereas MtnA, MtnB and MtnD (Drosophila orthologues of human metallothioneins) were up-regulated by Cu in a time- and dose-dependent manner. To examine the effect on Cu homoeostasis, expression of several key copper homoeostasis genes was suppressed using double-stranded RNA interference. Suppression of the MTF-1 (metal-regulatory transcription factor 1), reduced both basal and Cu-induced gene expressions of MtnA, MtnB and MtnD, significantly reducing the tolerance of these cells to increased Cu. Suppression of either Ctr1A (a Drosophila orthologue of yeast CTR1) or Ctr1B significantly reduced Cu uptake from media, demonstrating that both these proteins function to transport Cu into S2 cells. Significantly, Cu induced Ctr1B gene expression, and this could be prevented by suppressing MTF-1, suggesting that Ctr1B might be involved in Cu detoxification. Suppression of DmATP7, the putative homologue of human Cu transporter genes ATP7A and ATP7B, significantly increased Cu accumulation, demonstrating that DmATP7 is essential for efflux of excess Cu. This work is consistent with previous studies in mammalian cells, validating S2 cells as a model system for studying Cu transport and identifying novel Cu regulatory mechanisms.


2019 ◽  
Author(s):  
Kaeli N. Bryant ◽  
Irene L.G. Newton

AbstractWolbachia pipientis is an intracellular alphaproteobacterium that infects 40-60% of insect species and is well known for host reproductive manipulations. Although Wolbachia are primarily maternally transmitted, evidence of horizontal transmission can be found in incongruent host-symbiont phylogenies and recent acquisitions of the same Wolbachia strain by distantly related species. Parasitoids and predator-prey interactions may indeed facilitate the transfer of Wolbachia between insect lineages but it is likely that Wolbachia are acquired via introgression in many cases. Many hypotheses exist as to explain Wolbachia prevalence and penetrance such as nutritional supplementation, protection from parasites, protection from viruses, or straight up reproductive parasitism. Using classical genetics we show that Wolbachia increase recombination in infected lineages across two genomic intervals. This increase in recombination is titer dependent as the wMelPop variant, which infects at higher load in Drosophila melanogaster, increases recombination 5% more than the wMel variant. In addition, we also show that Spiroplasma poulsonii, the other bacterial intracellular symbiont of Drosophila melanogaster, does not induce an increase in recombination. Our results suggest that Wolbachia infection specifically alters host recombination landscape in a dose dependent manner.Article SummaryThe ubiquitous bacterial symbiont Wolbachia is known to alter host reproduction through manipulation of host cell biology, protect from pathogens, and supplement host nutrition. In this work we show that Wolbachia specifically increases host recombination in a dose dependent manner. Flies harboring Wolbachia exhibit elevated rates of recombination across the 2nd and X chromosomes and this increase is proportional to their Wolbachia load. In contrast, another intracellular symbiont, Spiroplasma, does not lead to an increase in recombination across the intervals tested. Our results point to a specific effect of Wolbachia infection that may have a significant effect on infected insect populations.


Sign in / Sign up

Export Citation Format

Share Document