scholarly journals Population Imaging of Central Sensitization

2021 ◽  
Author(s):  
Charles A Warwick ◽  
Joseph Salsovic ◽  
Junichi Hachisuka ◽  
Kelly M M Smith ◽  
Haichao Chen ◽  
...  

Capsaicin applied locally to the skin causes central sensitization that results in allodynia, a state in which pain is elicited by innocuous stimuli. Here, we used two-photon calcium imaging of neurons in the dorsal spinal cord to visualize central sensitization across excitatory interneurons and spinal projection neurons. To distinguish among excitatory neuron subtypes, we developed CICADA, a cell profiling approach that leverages the expression of distinct Gq-coupled receptors. We then identified capsaicin-responsive and capsaicin-sensitized neuronal populations. Capsaicin-sensitized neurons showed emergent responses to low threshold input and increased receptive field sizes consistent with the psychophysical phenomenon that allodynia is observed across an extended secondary zone. Finally, we identified spinal projection neurons that showed a shift in tuning toward low threshold input. These experiments provide a population-level view of central sensitization and a framework with which to model somatosensory integration in the dorsal horn.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marta Maltese ◽  
Jeffrey R March ◽  
Alexander G Bashaw ◽  
Nicolas X Tritsch

Dopamine (DA) is a critical modulator of brain circuits that control voluntary movements, but our understanding of its influence on the activity of target neurons in vivo remains limited. Here, we use two-photon Ca2+ imaging to monitor the activity of direct and indirect-pathway spiny projection neurons (SPNs) simultaneously in the striatum of behaving mice during acute and prolonged manipulations of DA signaling. We find that increasing and decreasing DA biases striatal activity towards the direct and indirect pathways, respectively, by changing the overall number of SPNs recruited during behavior in a manner not predicted by existing models of DA function. This modulation is drastically altered in a model of Parkinson's disease. Our results reveal a previously unappreciated population-level influence of DA on striatal output and provide novel insights into the pathophysiology of Parkinson's disease.


2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Yutaka Yawata ◽  
Tatsunori Kiyokawa ◽  
Yuhki Kawamura ◽  
Tomohiro Hirayama ◽  
Kyosuke Takabe ◽  
...  

ABSTRACT Here we analyzed the innate fluorescence signature of the single microbial cell, within both clonal and mixed populations of microorganisms. We found that even very similarly shaped cells differ noticeably in their autofluorescence features and that the innate fluorescence signatures change dynamically with growth phases. We demonstrated that machine learning models can be trained with a data set of single-cell innate fluorescence signatures to annotate cells according to their phenotypes and physiological status, for example, distinguishing a wild-type Aspergillus nidulans cell from its nitrogen metabolism mutant counterpart and log-phase cells from stationary-phase cells of Pseudomonas putida. We developed a minimally invasive method (confocal reflection microscopy-assisted single-cell innate fluorescence [CRIF] analysis) to optically extract and catalog the innate cellular fluorescence signatures of each of the individual live microbial cells in a three-dimensional space. This technique represents a step forward from traditional techniques which analyze the innate fluorescence signatures at the population level and necessitate a clonal culture. Since the fluorescence signature is an innate property of a cell, our technique allows the prediction of the types or physiological status of intact and tag-free single cells, within a cell population distributed in a three-dimensional space. Our study presents a blueprint for a streamlined cell analysis where one can directly assess the potential phenotype of each single cell in a heterogenous population by its autofluorescence signature under a microscope, without cell tagging. IMPORTANCE A cell’s innate fluorescence signature is an assemblage of fluorescence signals emitted by diverse biomolecules within a cell. It is known that the innate fluoresce signature reflects various cellular properties and physiological statuses; thus, they can serve as a rich source of information in cell characterization as well as cell identification. However, conventional techniques focus on the analysis of the innate fluorescence signatures at the population level but not at the single-cell level and thus necessitate a clonal culture. In the present study, we developed a technique to analyze the innate fluorescence signature of a single microbial cell. Using this novel method, we found that even very similarly shaped cells differ noticeably in their autofluorescence features, and the innate fluorescence signature changes dynamically with growth phases. We also demonstrated that the different cell types can be classified accurately within a mixed population under a microscope at the resolution of a single cell, depending solely on the innate fluorescence signature information. We suggest that single-cell autofluoresce signature analysis is a promising tool to directly assess the taxonomic or physiological heterogeneity within a microbial population, without cell tagging.


2019 ◽  
Author(s):  
Quentin Montardy ◽  
Zheng Zhou ◽  
Xuemei Liu ◽  
Zhuogui Lei ◽  
Pengyu Zeng ◽  
...  

AbstractIt is though that only a subset of brain structures can encode emotional states. This can be investigated though a set of properties, including the ability of neurons to respond to a conditioned stimulus (CS) preceding an aversive unconditioned stimulus (US). The dorsolateral periacqueductal gray (dPAG) is a midbrain structure though to have an essential role in coordinating defensive behaviors in response to aversive stimulation. But its ability of dPAG neurons to encode a CS following fear conditioning as not been sufficiently studied.Here we used calcium imaging by fiber photometry to record the activity of dPAGVGluT2+ and dPAGGAD2+ neuronal populations during unconditioned and conditioned aversive stimulation. Then, following an unconditioned stimulation we performed a retrieval experiment to quantify memory-like responses of dPAG neurons. This shown that whilst both dPAGVGluT2+ and dPAGGAD2+ neuronal populations respond to direct US stimulation, and to CS stimulation during conditioning, only the dPAGVGluT2+ population persisted in responding to the CS stimulation during retrieval. Finally, to better understand dPAGVGluT2+ and dPAGGAD2+ connectivity patterns, we performed a cell specific monosynaptic retrograde rabies virus tracing experiment. This revealed that different patterns of fibers projects to dPAGVGluT2+ and dPAGGAD2+, further complementing our recording showing divergences between PAGVGluT2+ and dPAGGAD2+ populations.


2020 ◽  
Author(s):  
Yue Li ◽  
Adam Eshein ◽  
Ranya K.A. Virk ◽  
Aya Eid ◽  
Wenli Wu ◽  
...  

AbstractIn eukaryotic cells, chromatin structure is linked to transcription processes through the regulation of genome organization. Extending across multiple length-scales - from the nucleosome to higher-order three-dimensional structures - chromatin is a dynamic system which evolves throughout the lifetime of a cell. However, no individual technique can fully elucidate the behavior of chromatin organization and its relation to molecular function at all length- and timescales at both a single-cell and a cell population level. Herein, we present a multi-technique nanoscale Chromatin Imaging and Analysis (nano-ChIA) platform that bridges electron tomography and optical superresolution imaging of chromatin conformation and transcriptional processes, with resolution down to the level of individual nucleosomes, with high-throughput, label-free analysis of chromatin packing and its dynamics in live cells. Utilizing nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nm, sub-Mb genomic size, and an internal fractal structure. The chromatin packing behavior of these domains is directly influenced by active gene transcription. Furthermore, we demonstrated that the chromatin packing domain structure is correlated among progenitor cells and all their progeny, indicating that the organization of chromatin into fractal packing domains is heritable across cell division. Further studies employing the nano-ChIA platform have the potential to provide a more coherent picture of chromatin structure and its relation to molecular function.


1997 ◽  
Vol 11 (4) ◽  
pp. 433-441 ◽  
Author(s):  
T.F. Watson

High-resolution confocal microscopic images may be made of either the surface of a sample or beneath the surface. These images can be likened to optical tomograms, giving thin (> 0.35 μm) slices up to 200 μm below the surface of a transparent tissue: With microscopes running under normal conditions, the optical section thickness will be >1 μm and the effective penetration into enamel and dentin a maximum of 100 μm. For maximum resolution, high-quality, high-numerical-aperture objectives should be used. Refractive index matching of the lens immersion media and the substrate will avoid distortions of images in the optical axis. Such errors could occur when imaging a considerable distance (> 40 μm) into a cell containing water, with an oil immersion objective above the cover slip. Care should be taken in the interpretation of computerized z axis reconstructions made from serial optical sections: Their validity should be checked with equivalent views made with the sample oriented in the same direction as the reconstruction. The use of fluorescent dyes in microscopy is a very powerful investigative technique. It is important that the dyes used not be labile and that they be well-fixed to the materials being examined, or the images may indicate the dye distribution rather than the material to which it is "attached". Multiple labeling experiments must have crossover control experiments to verify the distribution of the individual dyes. Valuable information can often be gained by combining information from both reflection and fluorescence images. Two-photon laser excitation of dyes gives the potential for greater depth penetration and improved resolution.


Sign in / Sign up

Export Citation Format

Share Document