scholarly journals Signaling by the integrated stress response kinase PKR is fine-tuned by dynamic clustering

2021 ◽  
Author(s):  
Francesca Zappa ◽  
Nerea L. Muniozguren ◽  
Jose Carlos Ponce-Rojas ◽  
Diego Acosta-Alvear

The double-stranded RNA sensor kinase PKR is one of four integrated stress response (ISR) sensor kinases that phosphorylate the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) in response to stress. The current model of PKR activation considers the formation of back-to-back PKR dimers as a prerequisite for signal propagation. Here we show that PKR signaling involves the assembly of dynamic PKR clusters. PKR clustering is driven by ligand binding to PKR′s sensor domain and by front-to-front interfaces between PKR′s kinase domains. PKR clusters are discrete, heterogeneous, autonomous coalescences that share some protein components with processing bodies. Strikingly, eIF2α is not recruited to PKR clusters, and PKR cluster disruption enhances eIF2α phosphorylation. Together, these results support a model in which PKR clustering buffers downstream signaling, which may enable proofreading the ISR.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ai-Ling Tian ◽  
Qi Wu ◽  
Peng Liu ◽  
Liwei Zhao ◽  
Isabelle Martins ◽  
...  

AbstractThe integrated stress response manifests with the phosphorylation of eukaryotic initiation factor 2α (eIF2α) on serine residue 51 and plays a major role in the adaptation of cells to endoplasmic reticulum stress in the initiation of autophagy and in the ignition of immune responses. Here, we report that lysosomotropic agents, including azithromycin, chloroquine, and hydroxychloroquine, can trigger eIF2α phosphorylation in vitro (in cultured human cells) and, as validated for hydroxychloroquine, in vivo (in mice). Cells bearing a non-phosphorylatable eIF2α mutant (S51A) failed to accumulate autophagic puncta in response to azithromycin, chloroquine, and hydroxychloroquine. Conversely, two inhibitors of eIF2α dephosphorylation, nelfinavir and salubrinal, enhanced the induction of such autophagic puncta. Altogether, these results point to the unexpected capacity of azithromycin, chloroquine, and hydroxychloroquine to elicit the integrated stress response.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 200
Author(s):  
Luke D. Bussiere ◽  
Cathy L. Miller

Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR.


2020 ◽  
Vol 4 (2) ◽  
pp. e202000865
Author(s):  
Andreia Mendes ◽  
Julien P Gigan ◽  
Christian Rodriguez Rodrigues ◽  
Sébastien A Choteau ◽  
Doriane Sanseau ◽  
...  

In stressed cells, phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation and gene expression known as the integrated stress response. We show here that DCs are characterized by high eIF2α phosphorylation, mostly caused by the activation of the ER kinase PERK (EIF2AK3). Despite high p-eIF2α levels, DCs display active protein synthesis and no signs of a chronic integrated stress response. This biochemical specificity prevents translation arrest and expression of the transcription factor ATF4 during ER-stress induction by the subtilase cytotoxin (SubAB). PERK inactivation, increases globally protein synthesis levels and regulates IFN-β expression, while impairing LPS-stimulated DC migration. Although the loss of PERK activity does not impact DC development, the cross talk existing between actin cytoskeleton dynamics; PERK and eIF2α phosphorylation is likely important to adapt DC homeostasis to the variations imposed by the immune contexts.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Carmela Sidrauski ◽  
Jordan C Tsai ◽  
Martin Kampmann ◽  
Brian R Hearn ◽  
Punitha Vedantham ◽  
...  

The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases.


2015 ◽  
Vol 113 (2) ◽  
pp. E117-E126 ◽  
Author(s):  
Aude De Gassart ◽  
Bojan Bujisic ◽  
Léa Zaffalon ◽  
Laurent A. Decosterd ◽  
Antonia Di Micco ◽  
...  

Inhibitors of the HIV aspartyl protease [HIV protease inhibitors (HIV-PIs)] are the cornerstone of treatment for HIV. Beyond their well-defined antiretroviral activity, these drugs have additional effects that modulate cell viability and homeostasis. However, little is known about the virus-independent pathways engaged by these molecules. Here we show that the HIV-PI Nelfinavir decreases translation rates and promotes a transcriptional program characteristic of the integrated stress response (ISR). Mice treated with Nelfinavir display hallmarks of this stress response in the liver, including α subunit of translation initiation factor 2 (eIF2α) phosphorylation, activating transcription factor-4 (ATF4) induction, and increased expression of known downstream targets. Mechanistically, Nelfinavir-mediated ISR bypassed direct activation of the eIF2α stress kinases and instead relied on the inhibition of the constitutive eIF2α dephosphorylation and down-regulation of the phophatase cofactor CReP (Constitutive Repressor of eIF2α Phosphorylation; also known as PPP1R15B). These findings demonstrate that the modulation of eIF2α-specific phosphatase cofactor activity can be a rheostat of cellular homeostasis that initiates a functional ISR and suggest that the HIV-PIs could be repositioned as therapeutics in human diseases to modulate translation rates and stress responses.


2020 ◽  
Vol 79 (2) ◽  
pp. 123-143 ◽  
Author(s):  
Sarah Bond ◽  
Claudia Lopez-Lloreda ◽  
Patrick J Gannon ◽  
Cagla Akay-Espinoza ◽  
Kelly L Jordan-Sciutto

Abstract The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.


2004 ◽  
Vol 167 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Phoebe D. Lu ◽  
Heather P. Harding ◽  
David Ron

Stress-induced eukaryotic translation initiation factor 2 (eIF2) α phosphorylation paradoxically increases translation of the metazoan activating transcription factor 4 (ATF4), activating the integrated stress response (ISR), a pro-survival gene expression program. Previous studies implicated the 5′ end of the ATF4 mRNA, with its two conserved upstream ORFs (uORFs), in this translational regulation. Here, we report on mutation analysis of the ATF4 mRNA which revealed that scanning ribosomes initiate translation efficiently at both uORFs and ribosomes that had translated uORF1 efficiently reinitiate translation at downstream AUGs. In unstressed cells, low levels of eIF2α phosphorylation favor early capacitation of such reinitiating ribosomes directing them to the inhibitory uORF2, which precludes subsequent translation of ATF4 and represses the ISR. In stressed cells high levels of eIF2α phosphorylation delays ribosome capacitation and favors reinitiation at ATF4 over the inhibitory uORF2. These features are common to regulated translation of GCN4 in yeast. The metazoan ISR thus resembles the yeast general control response both in its target genes and its mechanistic details.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i12-i13
Author(s):  
Sofya Langman ◽  
Alberto Delaidelli ◽  
Yue Zhou Huang ◽  
Poul Sorensen

Abstract Medulloblastoma (MB) accounts for 20% of diagnosed brain tumors in children. Group 3 (G3) MB subtype is the most aggressive. Molecularly, G3 MB is characterized by MYC overexpression, which drives elevated mRNA translation in tumor cells. PERK is an eukaryotic translation initiation factor 2 (eIF2α) kinase that inhibits mRNA translation under endoplasmic reticulum (ER) stress conditions, such as in response to accumulation of unfolded proteins. When unfolded proteins accumulate in the ER, activated PERK phosphorylates eIF2α. This shuts down global translation and triggers integrated stress response (ISR) to help cells adapt through selective translation of mRNA encoding pro-survival proteins. High mRNA expression of PERK correlates with poor survival in G3 MB patients. In vitro, combination of ER or hypoxic stress with PERK knockdown induces apoptosis in MB cells. ISRIB is an ISR inhibitor that maintains translation rates despite eIF2α phosphorylation. Combining ISRIB with stress such as hypoxia induces apoptosis in MB cells and prevents accumulation of key ISR mediators such as ATF4. In addition, combination of ISRIB and hypoxia induces oxidative stress. Current G3 MB treatment regimens include vincristine, a known ISR inducer. Combination of ISRIB with vincristine amplifies vincristine-induced apoptosis, potentially suggesting novel therapeutic approach for MB. Our findings show that inhibition of ISR in G3 MB represents a powerful inducer of cancer cell death.


Sign in / Sign up

Export Citation Format

Share Document