HARLEY: A Semi-Automated detection of foci in fluorescence images of yeast

2021 ◽  
Author(s):  
Ilya Shabanov ◽  
J. Ross Buchan

Quantification of cellular structures in fluorescence microscopy data is a key means of understanding cellular function. Unfortunately, numerous cellular structures present unique challenges in their ability to be unbiasedly and accurately detected and quantified. In our studies on stress granules in yeast, users displayed a striking variation of up to 3.7-fold in foci calls and were only able to replicate their results with 62-78% correlation, when requantifying the same images. To facilitate consistent results we developed HARLEY (Human Augmented Recognition of LLPS Ensembles in Yeast), a customizable software for detection and quantification of stress granules in S.cerevisiae. After a brief model training on ~20 cells the detection of foci is fully automated and based on closed loops in intensity contours, constrained only by the a-priori known size of the features of interest. Since no shape is implied, this method is not limited to round features, as is often the case with other algorithms. Candidate features are annotated with a set of geometrical and intensity-based properties to train a kernel Support Vector Machine to recognize features of interest. The trained classifier is then used to create consistent results across datasets. HARLEY is aimed at users without technical expertise, allows for batch processing and is freely available, which should be of broad interest to users focused on analysis of microscopy data in yeast.

Forecasting ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 377-420
Author(s):  
Julien Chevallier ◽  
Dominique Guégan ◽  
Stéphane Goutte

This paper focuses on forecasting the price of Bitcoin, motivated by its market growth and the recent interest of market participants and academics. We deploy six machine learning algorithms (e.g., Artificial Neural Network, Support Vector Machine, Random Forest, k-Nearest Neighbours, AdaBoost, Ridge regression), without deciding a priori which one is the ‘best’ model. The main contribution is to use these data analytics techniques with great caution in the parameterization, instead of classical parametric modelings (AR), to disentangle the non-stationary behavior of the data. As soon as Bitcoin is also used for diversification in portfolios, we need to investigate its interactions with stocks, bonds, foreign exchange, and commodities. We identify that other cryptocurrencies convey enough information to explain the daily variation of Bitcoin’s spot and futures prices. Forecasting results point to the segmentation of Bitcoin concerning alternative assets. Finally, trading strategies are implemented.


2021 ◽  
Vol 26 (3) ◽  
pp. 1-17
Author(s):  
Urmimala Roy ◽  
Tanmoy Pramanik ◽  
Subhendu Roy ◽  
Avhishek Chatterjee ◽  
Leonard F. Register ◽  
...  

We propose a methodology to perform process variation-aware device and circuit design using fully physics-based simulations within limited computational resources, without developing a compact model. Machine learning (ML), specifically a support vector regression (SVR) model, has been used. The SVR model has been trained using a dataset of devices simulated a priori, and the accuracy of prediction by the trained SVR model has been demonstrated. To produce a switching time distribution from the trained ML model, we only had to generate the dataset to train and validate the model, which needed ∼500 hours of computation. On the other hand, if 10 6 samples were to be simulated using the same computation resources to generate a switching time distribution from micromagnetic simulations, it would have taken ∼250 days. Spin-transfer-torque random access memory (STTRAM) has been used to demonstrate the method. However, different physical systems may be considered, different ML models can be used for different physical systems and/or different device parameter sets, and similar ends could be achieved by training the ML model using measured device data.


2021 ◽  
Vol 18 (4) ◽  
pp. 1275-1281
Author(s):  
R. Sudha ◽  
G. Indirani ◽  
S. Selvamuthukumaran

Resource management is a significant task of scheduling and allocating resources to applications to meet the required Quality of Service (QoS) limitations by the minimization of overhead with an effective resource utilization. This paper presents a Fog-enabled Cloud computing resource management model for smart homes by the Improved Grey Wolf Optimization Strategy. Besides, Kernel Support Vector Machine (KSVM) model is applied for series forecasting of time and also of processing load of a distributed server and determine the proper resources which should be allocated for the optimization of the service response time. The presented IGWO-KSVM model has been simulated under several aspects and the outcome exhibited the outstanding performance of the presented model.


In agriculture the major problem is leaf disease identifying these disease in early stage increases the yield. To reduce the loss identifying the various disease is very important. In this work , an efficient technique for identifying unhealthy tomato leaves using a machine learning algorithm is proposed. Support Vector Machines (SVM) is the methodology of machine learning , and have been successfully applied to a number of applications to identify region of interest, classify the region. The proposed algorithm has three main staggers, namely preprocessing, feature extraction and classification. In preprocessing, the images are converted to RGB and the average filter is used to eliminate the noise in the input image. After the pre-processing stage, features such as texture, color and shape are extracted from each image. Then, the extracted features are presented to the classifier to classify an input tomato leaf as a healthy or unhealthy image. For classification, in this paper, a multi-kernel support vector machine (MKSVM) is used. The performance of the proposed method is analysed on the basis of different metrics, such as accuracy, sensitivity and specificity. The images used in the test are collected from the plant village. The proposed method implemented in MATLAB.


2021 ◽  
Vol 9 (1) ◽  
pp. 215-223
Author(s):  
Prateek Mishra, Dr.Anurag Sharma, Dr. Abhishek Badholia

Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic.  supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.


Sign in / Sign up

Export Citation Format

Share Document