scholarly journals Distinct ribosome states trigger diverse mRNA quality control pathways

2021 ◽  
Author(s):  
Anthony J. Veltri ◽  
Karole N. D’Orazio ◽  
Laura N. Lessen ◽  
Raphael Loll-Krippleber ◽  
Grant W. Brown ◽  
...  

AbstractKey protein adapters couple translation to mRNA decay on specific classes of problematic mRNAs in eukaryotes. Slow decoding on non-optimal codons leads to codon-optimality-mediated decay (COMD) and prolonged arrest at stall sites leads to no-go decay (NGD). The identities of the decay factors underlying these processes and the mechanisms by which they respond to translational distress remain open areas of investigation. We use carefully-designed reporter mRNAs to perform genetic screens and functional assays in S. cerevisiae. We characterize the roles of Hel2 and Syh1 in coordinating translational repression and mRNA decay on NGD reporter mRNAs, finding that Syh1 acts as the primary link to mRNA decay in NGD. Importantly, we observe that these NGD factors are not involved in the degradation of mRNAs enriched in non-optimal codons. Further, we establish that a key factor previously implicated in COMD, Not5, contributes modestly to the degradation of an NGD-targeted mRNA. Finally, we use ribosome profiling to reveal distinct ribosomal states associated with each reporter mRNA that readily rationalize the contributions of NGD and COMD factors to degradation of these reporters. Taken together, these results provide new mechanistic insight into the role of Syh1 in NGD and define the molecular triggers that determine how distinct pathways target mRNAs for degradation in yeast.

Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 723-733 ◽  
Author(s):  
Huijuan Zhang ◽  
Guishuan Wang ◽  
Lin Liu ◽  
Xiaolin Liang ◽  
Yu Lin ◽  
...  

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.


2021 ◽  
Author(s):  
Sarah E. Fritz ◽  
Soumya Ranganathan ◽  
J. Robert Hogg

AbstractThe nonsense-mediated mRNA decay (NMD) pathway monitors translation termination to degrade transcripts with premature stop codons and regulate thousands of human genes. Due to the major role of NMD in RNA quality control and gene expression regulation, it is important to understand how the pathway responds to changing cellular conditions. Here we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL, enables condition-dependent remodeling of NMD specificity. UPF1LL associates more stably with potential NMD target mRNAs than the major UPF1SL isoform, expanding the scope of NMD to include many transcripts normally immune to the pathway. Unexpectedly, the enhanced persistence of UPF1LL on mRNAs supports induction of NMD in response to rare translation termination events. Thus, while canonical NMD is abolished by translational repression, UPF1LL activity is enhanced, providing a mechanism to rapidly rewire NMD specificity in response to cellular stress.


Life Sciences ◽  
2022 ◽  
pp. 120299
Author(s):  
Mehdi Sanati ◽  
Samaneh Aminyavari ◽  
Amir R. Afshari ◽  
Amirhossein Sahebkar

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Suk Min Jang ◽  
Catherine Lachance ◽  
Wenyi Mi ◽  
Jie Lyu ◽  
...  

Abstract Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 224 ◽  
Author(s):  
Sara Lega ◽  
Samuele Naviglio ◽  
Stefano Volpi ◽  
Alberto Tommasini

As the outbreak of the new coronavirus (SARS-CoV-2) infection is spreading globally, great effort is being made to understand the disease pathogenesis and host factors that predispose to disease progression in an attempt to find a window of opportunity for intervention. In addition to the direct cytopathic effect of the virus, the host hyper-inflammatory response has emerged as a key factor in determining disease severity and mortality. Accumulating clinical observations raised hypotheses to explain why some patients develop more severe disease while others only manifest mild or no symptoms. So far, Covid-19 management remains mainly supportive. However, many researches are underway to clarify the role of antiviral and immunomodulating drugs in changing morbidity and mortality in patients who become severely ill. This review summarizes the current state of knowledge on the interaction between SARS-CoV-2 and the host immune system and discusses recent findings on proposed pharmacologic treatments.


2019 ◽  
Vol 11 (11) ◽  
pp. 994-1005 ◽  
Author(s):  
Ran Wei ◽  
Xuguang Liu ◽  
Courtney Voss ◽  
Wentao Qin ◽  
Lina Dagnino ◽  
...  

Abstract NUMB is an evolutionarily conserved protein that plays an important role in cell adhesion, migration, polarity, and cell fate determination. It has also been shown to play a role in the pathogenesis of certain cancers, although it remains controversial whether NUMB functions as an oncoprotein or tumor suppressor. Here, we show that NUMB binds to anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase aberrantly activated in several forms of cancer, and this interaction regulates the endocytosis and activity of ALK. Intriguingly, the function of the NUMB–ALK interaction is isoform-dependent. While both p66-NUMB and p72-NUMB isoforms are capable of mediating the endocytosis of ALK, the former directs ALK to the lysosomal degradation pathway, thus decreasing the overall ALK level and the downstream MAP kinase signal. In contrast, the p72-NUMB isoform promotes ALK recycling back to the plasma membrane, thereby maintaining the kinase in its active state. Our work sheds light on the controversial role of different isoforms of NUMB in tumorigenesis and provides mechanistic insight into ALK regulation.


2019 ◽  
Vol 131 ◽  
pp. 32-40 ◽  
Author(s):  
Xingfa Han ◽  
Min Zhou ◽  
Xiaohan Cao ◽  
Xiaogang Du ◽  
Fengyan Meng ◽  
...  

2009 ◽  
Vol 37 (10) ◽  
pp. 1176-1185.e21 ◽  
Author(s):  
Cristina Cellai ◽  
Anna Laurenzana ◽  
Elisa Bianchi ◽  
Sara Sdelci ◽  
Rossella Manfredini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document