scholarly journals Functional analyses of two novel LRRK2 pathogenic variants in familial Parkinson’s disease

2021 ◽  
Author(s):  
I Coku ◽  
E Mutez ◽  
S Eddarkaoui ◽  
S Carrier ◽  
A Marchand ◽  
...  

ABSTRACTBackgroundPathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson’s disease. However, only seven variants have been confirmed to be pathogenic.ObjectivesWe identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing.MethodsWe transiently expressed wildtype, the two new variants, or two known pathogenic mutants (G2019S and R1441G), in HEK-293T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins.ResultsThe two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity.ConclusionsWe identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson’s disease.

2019 ◽  
Vol 11 (15) ◽  
pp. 1953-1977 ◽  
Author(s):  
Sofia Domingos ◽  
Teresa Duarte ◽  
Lucília Saraiva ◽  
Rita C Guedes ◽  
Rui Moreira

Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine kinase involved in multiple cellular processes and signaling pathways. LRRK2 mutations are associated with autosomal-inherited Parkinson's disease (PD), and evidence suggests that LRRK2 pathogenic variants generally increase kinase activity. Therefore, inhibition of LRRK2 kinase function is a promising therapeutic strategy for PD treatment. The search for drug-like molecules capable of reducing LRRK2 kinase activity in PD led to the design of selective LRRK2 inhibitors predicted to be within the CNS drug-like space. This review highlights the journey that translates chemical tools for interrogating the role of LRRK2 in PD into promising drug candidates, addressing the challenges in discovering selective and brain-penetrant LRRK2 modulators and exploring the structure–activity relationship of distinct LRRK2 inhibitors.


2021 ◽  
Author(s):  
Federica Albanese ◽  
Daniela Mercatelli ◽  
Luca Finetti ◽  
Giulia Lamonaca ◽  
Sara Pizzi ◽  
...  

Abstract Background: Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familiar and sporadic Parkinson’s disease. LRRK2 modulates the autophagy-lysosome pathway (ALP), a clearance process subserving the quality control of cellular proteins and organelles. Since dysfunctional ALP might lead to α-synuclein accumulation and, hence, Parkinson’s disease, LRRK2 kinase modulation of ALP, its age-dependence and relation with pSer129 a-synuclein inclusions in striatal and nigral neurons were investigated in vivo. Methods: Striatal ALP markers were analyzed by Western blotting in 3, 12 and 20-month-old LRRK2 G2019S knock-in mice (bearing enhanced kinase activity), LRRK2 knock-out mice, LRRK2 D1994S knock-in (kinase-dead) mice and wild-type controls. The lysosomotropic agent chloroquine was used to investigate the autophagic flux in vivo. Quantitative Real-time PCR was used to quantify the transcript levels of key ALP genes. The activity of the lysosomal enzyme glucocerebrosidase was measured using enzymatic assay. Immunohistochemistry was used to co-localize LC3B puncta with pSer129 a-synuclein inclusion in striatal MAP-positive and nigral TH-positive neurons. Results: No genotype differences in macroautophagy and chaperone-mediated autophagy markers were observed at 3 months. Conversely, increase of LC3-I, p62, LAMP2 and GAPDH levels, decrease of p-mTOR levels and downregulation of mTOR and TFEB expression was observed in 12-month-old kinase-dead mice. The LC3-II/LC3-I ratio was reduced following administration of chloroquine, suggesting a defective autophagic flux. G2019S knock-in mice showed LAMP2 accumulation and downregulation of ALP key genes MAP1LC3B, LAMP2, mTOR, TFEB and GBA1. Subacute administration of the LRRK2 kinase inhibitor MLi-2 in wild-type and G2019S knock-in mice did not replicate the pattern of kinase-dead mice. Lysosomal glucocerebrosidase activity was increased in 3 and 12-month-old knock-out and kinase-dead mice, and GBA1 expression reduced in 12-month-old G2019S knock-in mice. Immunofluorescence revealed a dissociation between LC3B puncta accumulation and pSer129 a-synuclein inclusions in striatal neurons of kinase-dead and G2019S knock-in mice. Conclusions: We conclude that constitutive LRRK2 kinase silencing results in early deregulation of GCase activity followed by late impairment of macroautophagy and chaperone-mediated autophagy. In G2019S knock-in mice, pSer129 a-synuclein inclusions observed under basal conditions appear unrelated to autophagy impairment.


Cell Research ◽  
2019 ◽  
Vol 29 (4) ◽  
pp. 313-329 ◽  
Author(s):  
Adam Schaffner ◽  
Xianting Li ◽  
Yacob Gomez-Llorente ◽  
Emmanouela Leandrou ◽  
Anna Memou ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3708
Author(s):  
Jun Ogata ◽  
Kentaro Hirao ◽  
Kenya Nishioka ◽  
Arisa Hayashida ◽  
Yuanzhe Li ◽  
...  

Leucine-rich repeat kinase 2 (LRRK2) is a major causative gene of late-onset familial Parkinson’s disease (PD). The suppression of kinase activity is believed to confer neuroprotection, as most pathogenic variants of LRRK2 associated with PD exhibit increased kinase activity. We herein report a novel LRRK2 variant—p.G2294R—located in the WD40 domain, detected through targeted gene-panel screening in a patient with familial PD. The proband showed late-onset Parkinsonism with dysautonomia and a good response to levodopa, without cognitive decline or psychosis. Cultured cell experiments revealed that p.G2294R is highly destabilized at the protein level. The LRRK2 p.G2294R protein expression was upregulated in the patient’s peripheral blood lymphocytes. However, macrophages differentiated from the same peripheral blood showed decreased LRRK2 protein levels. Moreover, our experiment indicated reduced phagocytic activity in the pathogenic yeasts and α-synuclein fibrils. This PD case presents an example wherein the decrease in LRRK2 activity did not act in a neuroprotective manner. Further investigations are needed in order to elucidate the relationship between LRRK2 expression in the central nervous system and the pathogenesis caused by altered LRRK2 activity.


2021 ◽  
Author(s):  
Maria Kedariti ◽  
Emanuele Frattini ◽  
Pascale Baden ◽  
Susanna Cogo ◽  
Laura Civiero ◽  
...  

AbstractLRRK2 is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways and vesicle trafficking. Mutations in LRRK2 cause autosomal dominant forms of Parkinson’s disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we investigated GCase levels and activity in LRRK2 G2019S knockin mice, in clinical biospecimens from PD patients carrying this mutation and in patient-derived cellular models. In these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase.


2012 ◽  
Vol 40 (5) ◽  
pp. 1058-1062 ◽  
Author(s):  
Elisa Greggio

Interest in studying the biology of LRRK2 (leucine-rich repeat kinase 2) started in 2004 when missense mutations in the LRRK2 gene were linked to an inherited form of Parkinson's disease with clinical and pathological presentation resembling the sporadic syndrome. LRRK2 is a complex molecule containing domains implicated in protein interactions, as well as kinase and GTPase activities. The observation that the common G2019S mutation increases kinase activity in vitro suggests that altered phosphorylation of LRRK2 targets may have pathological outcomes. Given that protein kinases are ideal targets for drug therapies, much effort has been directed at understanding the role of LRRK2 kinase activity on disease onset. However, no clear physiological substrates have been identified to date, indicating that much research is still needed to fully understand the signalling pathways orchestrated by LRRK2 and deregulated under pathological conditions.


2020 ◽  
Author(s):  
Francois Singh ◽  
Alan R. Prescott ◽  
Graeme Ball ◽  
Alastair D. Reith ◽  
Ian G. Ganley

AbstractParkinson’s disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation – key features of the autophagy of mitochondria, known as mitophagy. Here we investigated the role of LRRK2, a protein kinase frequently mutated in PD, on this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson’s disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy.


2015 ◽  
Vol 21 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Melanie Leveridge ◽  
Lee Collier ◽  
Colin Edge ◽  
Phil Hardwicke ◽  
Bill Leavens ◽  
...  

LRRK2 is a large multidomain protein containing two functional enzymatic domains: a GTPase domain and a protein kinase domain. Dominant coding mutations in the LRRK2 protein are associated with Parkinson’s disease (PD). Among such pathogenic mutations, Gly2019Ser mutation in the LRRK2 kinase domain is the most frequent cause of familial PD in Caucasians and is also found in some apparently sporadic PD cases. This mutation results in 2- to 3-fold elevated LRRK2 kinase activity compared with wild type, providing a clear clinical hypothesis for the application of kinase inhibitors in the treatment of this disease. To date, reported screening assays for LRRK2 have been based on detection of labeled adenosine triphosphate and adenosine diphosphate or on antibody-based detection of phosphorylation events. While these assays do offer a high-throughput method of monitoring LRRK2 kinase activity, they are prone to interference from autofluorescent compounds and nonspecific events. Here we describe a label-free assay for LRRK2 kinase activity using the RapidFire mass spectrometry system. This assay format was found to be highly robust and enabled a screen of 100,000 lead-like small molecules. The assay successfully identified a number of known LRRK2 chemotypes that met stringent physicochemical criteria.


Author(s):  
Ahsan Usmani ◽  
Farbod Shavarebi ◽  
Annie Hiniker

Point mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD) and are implicated in a significant portion of apparently sporadic PD. Clinically, LRRK2-driven PD is indistinguishable from sporadic PD, making it an attractive genetic model for the much more common sporadic PD. In this review, we highlight recent advances in understanding LRRK2's subcellular functions using LRRK2-PD models, while also considering some of the limitations of these model systems. Recent developments of particular importance include new evidence of key LRRK2 functions in the endolysosomal system and LRRK2’s regulation of and by Rab GTPases. Additionally, LRRK2's interaction with the cytoskeleton allowed elucidation of the LRRK2 structure and appears relevant to LRRK2 protein degradation and LRRK2 kinase inhibitor therapies. We further discuss how LRRK2's interactions with other PD-driving genes, such as VPS35, GCase, and α-synuclein, may highlight cellular pathways more broadly disrupted in PD.


Sign in / Sign up

Export Citation Format

Share Document