Neuroprotective Effect of the LRRK2 Kinase Inhibitor PF-06447475 in Human Nerve-Like Differentiated Cells Exposed to Oxidative Stress Stimuli: Implications for Parkinson’s Disease

2016 ◽  
Vol 41 (10) ◽  
pp. 2675-2692 ◽  
Author(s):  
Miguel Mendivil-Perez ◽  
Carlos Velez-Pardo ◽  
Marlene Jimenez-Del-Rio
2020 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's. The drugs currently used to treat PD cannot inhibit the development of PD, and long-term use produces severe drug resistance and adverse reaction. Artemisinin (ART) is an active ingredient of Artemisia annua and has a neuroprotective effect, but the mechanism is still unclear. This study was designed to investigate the neuroprotective effect of ART in MPP+-treated SH-SY5Y cells. Results There was no significant cytotoxicity when the ART concentration was under. 40μM. The 20μM ART for 24h could increase the cell viability by reducing oxidative stress and cell apoptosis in MPP+-treated SH-SY5Y cell. In addition, immunoblot and immunofluorescence results showed that MPP+ treatment increased the expression of Beclin1, LC3II/LC3I and decreased the expression of P62, while ART can reverse the changes caused by MPP+. Discussion More and more researches reported that ART and its derivates have neuroprotective effects through anti-oxidant and anti-apoptosis. we found that pre-treated cells with 20μM ART for 4h could significantly increase the viability in Parkinson's disease cell model. The oxidative stress and apoptosis were the main reason for the degeneration of dopaminergic neurons, while artemisinin can attenuate oxidative stress and apoptosis in MPP+-lesioned dopaminergic neurons. The levels of autophagy proteins LC3II/I, Beclin1 and P62 also showed that MPP+ increased the autophagy level, and pre-treatment with ART decreased the autophagy level, which may be the pathological mechanism for artemisinin to reduce oxidative stress damage and apoptosis. Conclusions These results indicate that ART exerts a positive effect on MPP+-treated SH-SY5Y cells in terms of anti-oxidative stress and anti-apoptosis. These effects may be related to autophagy. These findings contribute to a better understanding of the critical role of ART in PD treatment.


2020 ◽  
Author(s):  
Francois Singh ◽  
Alan R. Prescott ◽  
Graeme Ball ◽  
Alastair D. Reith ◽  
Ian G. Ganley

AbstractParkinson’s disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation – key features of the autophagy of mitochondria, known as mitophagy. Here we investigated the role of LRRK2, a protein kinase frequently mutated in PD, on this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson’s disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy.


Author(s):  
Ahsan Usmani ◽  
Farbod Shavarebi ◽  
Annie Hiniker

Point mutations in Leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson’s disease (PD) and are implicated in a significant portion of apparently sporadic PD. Clinically, LRRK2-driven PD is indistinguishable from sporadic PD, making it an attractive genetic model for the much more common sporadic PD. In this review, we highlight recent advances in understanding LRRK2's subcellular functions using LRRK2-PD models, while also considering some of the limitations of these model systems. Recent developments of particular importance include new evidence of key LRRK2 functions in the endolysosomal system and LRRK2’s regulation of and by Rab GTPases. Additionally, LRRK2's interaction with the cytoskeleton allowed elucidation of the LRRK2 structure and appears relevant to LRRK2 protein degradation and LRRK2 kinase inhibitor therapies. We further discuss how LRRK2's interactions with other PD-driving genes, such as VPS35, GCase, and α-synuclein, may highlight cellular pathways more broadly disrupted in PD.


2018 ◽  
Vol 38 (2) ◽  
pp. 173-184 ◽  
Author(s):  
EK El-Sayed ◽  
AAE Ahmed ◽  
EM El Morsy ◽  
S Nofal

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease after Alzheimer’s disease, characterized by loss of dopaminergic neurons in substantia nigra pars compacta, accompanied by motor and nonmotor symptoms. The neuropathological hallmarks of PD are well reported, but the etiology of the disease is still undefined; several studies assume that oxidative stress, mitochondrial defects, and neuroinflammation play vital roles in the progress of the disease. The current study was established to investigate the neuroprotective effect of agmatine on a rotenone (ROT)-induced experimental model of PD. Adult male Sprague Dawley rats were subcutaneously injected with ROT at a dose of 2 mg/kg body weight for 35 days. Agmatine was injected intraperitoneally at 50 and 100 mg/kg body weight, 1 h prior to ROT administration. ROT-treated rats that received agmatine showed better performance on beam walking and an elevated number of rears within the cylinder test. In addition, agmatine reduced midbrain malondialdehyde as an indication of lipid peroxidation, pro-inflammatory cytokines including tumor necrosis factor alpha and interleukin-1β, and glial fibrillary acidic protein. Moreover, agmatine was responsible for preventing loss of tyrosine hydroxylase-positive neurons. In conclusion, our study showed that agmatine possesses a dose-dependent neuroprotective effect through its antioxidant and anti-inflammatory activities. These findings need further clinical investigations of agmatine as a promising neuroprotective agent for the future treatment of PD.


2020 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's. The drugs currently used to treat PD cannot inhibit the development of PD, and long-term use produces severe drug resistance and adverse reaction. Artemisinin (ART) is an active ingredient of Artemisia annua and has a neuroprotective effect, but the mechanism is still unclear. This study was designed to investigate the neuroprotective effect of ART in MPP+-treated SH-SY5Y cells. Results There was no significant cytotoxicity when the ART concentration was under. 40 µM. The 20 µM ART for 24 h could increase the cell viability by reducing oxidative stress and cell apoptosis in MPP+-treated SH-SY5Y cell. In addition, immunoblot and immunofluorescence results showed that MPP+ treatment increased the expression of Beclin1, LC3II/LC3I and decreased the expression of P62, while ART can reverse the changes caused by MPP+. Discussion More and more researches reported that ART and its derivates have neuroprotective effects through anti-oxidant and anti-apoptosis. we found that pre-treated cells with 20 µM ART for 4 h could significantly increase the viability in Parkinson's disease cell model. The oxidative stress and apoptosis were the main reason for the degeneration of dopaminergic neurons, while artemisinin can attenuate oxidative stress and apoptosis in MPP+-lesioned dopaminergic neurons. The levels of autophagy proteins LC3II/I, Beclin1 and P62 also showed that MPP + increased the autophagy level, and pre-treatment with ART decreased the autophagy level, which may be the pathological mechanism for artemisinin to reduce oxidative stress damage and apoptosis. Conclusions These results indicate that ART exerts a positive effect on MPP+-treated SH-SY5Y cells in terms of anti-oxidative stress and anti-apoptosis. These effects may be related to autophagy. These findings contribute to a better understanding of the critical role of ART in PD treatment.


Author(s):  
Ozlem Bahadır Acıkara ◽  
Gökçe Şeker Karatoprak ◽  
Çiğdem Yücel ◽  
Esra Küpeli Akkol ◽  
Eduardo Sobarzo-Sánchez ◽  
...  

: Parkinson's disease (PD) is a multifaceted disorder with various factors that have been suggested to play a synergistic pathophysiological role, such as oxidative stress, autophagy, pro-inflammatory events, and neurotransmitter abnormalities. While it is crucial to discover new treatments in addition to preventing PD, recent studies have focused on determining whether nutraceuticals will exert neuroprotective actions and pharmacological functions in PD. Quercetin, a flavonol- type flavonoid, is found in many fruits and vegetables and has been recognized as a complementary therapy for PD. The neuroprotective effect of quercetin is directly associated with its antioxidant activity, in addition to stimulating cellular defense against oxidative stress. Other related mechanisms are activating sirtuins (SIRT1) and inducing autophagy, in addition to induction of Nrf2-ARE and paraoxonase 2 (PON2). Quercetin, whose neuroprotective activity has been demonstrated in many studies, unfortunately, has a disadvantage because of its poor water solubility, chemical instability, and low oral bioavailability. It has been reported that the disadvantages of quercetin have been eliminated in studies with nanocarriers loaded with quercetin. The role of nanotechnology and nanodelivery systems in reducing oxidative stress during PD provides an indisputable advantage. Accordingly, the aim of the present review is to shed light on the beneficial effects and underlying mechanisms of quercetin in neuroprotection. In addition, the contribution of nanodelivery systems to the neuroprotective effect of quercetin will be discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Alejandra Guillermina Miranda-Díaz ◽  
Andrés García-Sánchez ◽  
Ernesto Germán Cardona-Muñoz

Oxidative stress plays a fundamental role in the pathogenesis of Parkinson’s disease (PD). Oxidative stress appears to be responsible for the gradual dysfunction that manifests via numerous cellular pathways throughout PD progression. This review will describe the prooxidant effect of excessive consumption of processed food. Processed meat can affect health due to its high sodium content, advanced lipid oxidation end-products, cholesterol, and free fatty acids. During cooking, lipids can react with proteins to form advanced end-products of lipid oxidation. Excessive consumption of different types of carbohydrates is a risk factor for PD. The antioxidant effects of some foods in the regular diet provide an inconclusive interpretation of the environment’s mechanisms with the modulation of oxidation stress-induced PD. Some antioxidant molecules are known whose primary mechanism is the neuroprotective effect. The melatonin mechanism consists of neutralizing reactive oxygen species (ROS) and inducing antioxidant enzyme’s expression and activity. N-acetylcysteine protects against the development of PD by restoring levels of brain glutathione. The balanced administration of vitamin B3, ascorbic acid, vitamin D and the intake of caffeine every day seem beneficial for brain health in PD. Excessive chocolate intake could have adverse effects in PD patients. The findings reported to date do not provide clear benefits for a possible efficient therapeutic intervention by consuming the nutrients that are consumed regularly.


2021 ◽  
Author(s):  
I Coku ◽  
E Mutez ◽  
S Eddarkaoui ◽  
S Carrier ◽  
A Marchand ◽  
...  

ABSTRACTBackgroundPathogenic variants in the LRRK2 gene are a common monogenic cause of Parkinson’s disease. However, only seven variants have been confirmed to be pathogenic.ObjectivesWe identified two novel LRRK2 variants (H230R and A1440P) and performed functional testing.MethodsWe transiently expressed wildtype, the two new variants, or two known pathogenic mutants (G2019S and R1441G), in HEK-293T cells, with or without LRRK2 kinase inhibitor treatment. We characterized the phosphorylation and kinase activity of the mutants by western blotting. Thermal shift assays were performed to determine the folding and stability of the LRRK2 proteins.ResultsThe two variants were found in two large families and segregate with the disease. They display altered LRRK2 phosphorylation and kinase activity.ConclusionsWe identified two novel LRRK2 variants which segregate with the disease. The results of functional testing lead us to propose these two variants as novel causative mutations for familial Parkinson’s disease.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francois Singh ◽  
Alan R Prescott ◽  
Philippa Rosewell ◽  
Graeme Ball ◽  
Alastair D Reith ◽  
...  

Parkinson’s disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation – key features of the autophagy of mitochondria, known as mitophagy. Here, we investigated the role of LRRK2, a protein kinase frequently mutated in PD, in this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson’s disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy.


Sign in / Sign up

Export Citation Format

Share Document