scholarly journals Active communities and growth of soil microorganisms are framed by mean annual precipitation in three California annual grasslands

2021 ◽  
Author(s):  
Megan M. Foley ◽  
Steven J. Blazewicz ◽  
Karis J. McFarlane ◽  
Alex Greenlon ◽  
Michaela Hayer ◽  
...  

AbstractEarth system models project altered precipitation regimes across much of the globe. In California, the winter wet season is predicted to extend into spring, and the summer dry period to lengthen. How altered precipitation will affect soil carbon (C) persistence is a key knowledge gap. However, we do not have a mechanistic understanding of how altered soil moisture regimes will affect microbial population dynamics. Using quantitative stable isotope probing (qSIP), we compared total and active soil microbial communities across three California annual grassland ecosystems that span a rainfall gradient and have developed upon similar parent material. We also assessed multiple edaphic variables, including available C and the radiocarbon (14C) age of soil C. Samples were assayed in the wet season, when we expected environmental conditions would be most similar across sites. We hypothesized that the long-term legacy of soil water limitation would be reflected in lower community growth capacity at the driest site. We also predicted that actively growing communities would be more compositionally similar across the gradient than the total background microbiome. Across the three sites, edaphic parameters such as pH roughly sorted with mean annual precipitation, and soil carbon age increased with precipitation. Bacterial growth rates increased from the driest site to the intermediate site, and rates were comparable between the intermediate and wettest sites. These differences were persistent across major phyla, including the Actinobacteria, Bacteroidetes, and Proteobacteria. Taxonomic identity was a strong predictor of growth, such that the growth rates of a taxon at one site predicted its growth rates at the others. We think this fact, that taxa that grew quickly at one site tended to grow quickly at the others, is likely a consequence of genetically determined physiological traits, and is consistent with the idea that evolutionary history influences growth rate.

2013 ◽  
Vol 29 (5) ◽  
pp. 463-466 ◽  
Author(s):  
Lilia L. Roa-Fuentes ◽  
Claudia Hidalgo ◽  
Jorge D. Etchevers ◽  
Julio Campo

Abstract:The effects of precipitation regime on the size of soil carbon (C) pools were compared in mature tropical dry forests of the Yucatan Peninsula. Our study included three forest stands in each, a dry site (potential evapotranspiration ratio = 3.2 mm mm−1; mean annual precipitation = 537 mm), a wetter site (2.0 mm mm−1; 993 mm) and a site in which water was comparatively less limiting (1.3 mm mm−1; 1086 mm). At each site, soil C pools in dead fallen phytomass (includes leaves, flowers, fruits, small twigs and deadwood debris) deposited on the litter layer and in roots and organic matter of the mineral soil (from the upper 10 cm) were measured in samples collected during the dry season. A high proportion of the total C pool (93–95%) was in the top 10 cm of soil in all forest sites. The smallest C pool was in roots (1.8–2.4% of the total C), meanwhile the C in the litter layer represented 3–5% of the total pool. These patterns were observed irrespective of study site. However, distribution of C (i.e. wood debris vs. fine litter) varied across sites; the proportion of the forest-floor C pool in wood debris decreased from 80% in the driest site, to 51% and 42% in 993-mm and 1086-mm sites, respectively. Overall, we observed that three pools (wood debris, roots and soil organic C) provide evidence for the significant decrease in soil C storage with increase in mean annual precipitation in Yucatan Peninsula. A potential explanation for this unexpected pattern includes an increasing C turnover time with decreasing mean annual precipitation, resulting in higher C accumulation per unit of C input in the driest site.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2021 ◽  
Author(s):  
Felipe Bastida ◽  
David J. Eldridge ◽  
Carlos García ◽  
G. Kenny Png ◽  
Richard D. Bardgett ◽  
...  

AbstractThe relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity–biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.


2012 ◽  
Vol 36 (1) ◽  
pp. 07-16 ◽  
Author(s):  
Miguel Angelo Branco Camargo ◽  
Ricardo Antonio Marenco

Crabwood (Carapa guianensis Aubl.) is a fast growing tree species with many uses among Amazonian local communities. The main objective of this study was to assess the effect of seasonal rainfall pattern on growth rates, and seasonal and diurnal changes in leaf gas exchange and leaf water potential (ΨL) in crabwood. To assess the effect of rainfall seasonality on growth and physiological leaf traits an experiment was conducted in Manaus, AM (03º 05' 30" S, 59º 59' 35" S). In this experiment, six 6-m tall plants were used to assess photosynthetic traits and ΨL. In a second experiment the effect of growth irradiance on stomatal density (S D), size (S S) and leaf thickness was assessed in 0.8-m tall saplings. Stomatal conductance (g s) and light-saturated photosynthesis (Amax) were higher in the wet season, and between 09:00 and 15:00 h. However, no effect of rainfall seasonality was found on ΨL and potential photosynthesis (CO2-saturated). ΨL declined from -0.3 MPa early in the morning to -0.75 MPa after midday. It increased in the afternoon but did not reach full recovery at sunset. Growth rates of crabwood were high, and similar in both seasons (2 mm month-1). Leaf thickness and S D were 19% and 47% higher in sun than in shade plants, whereas the opposite was true for S S. We conclude that ΨL greatly affects carbon assimilation of crabwood by reducing g s at noon, although this effect is not reflected on growth rates indicating that other factors offset the effect of g s on Amax.


2021 ◽  
Author(s):  
Ayalew Assefa ◽  
Abebe Tibebu ◽  
Amare Bihon ◽  
Alemu Dagnachew ◽  
Yimer Muktar

Abstract African horse sickness is a vector-borne, non-contagious and highly infectious disease of equines caused by African Horse Sickness viruses (AHSv) that mainly affect horses. The occurrence of the disease causes huge economic impacts because of its fatality rate is high, trade ban and disease control costs. In planning of vectors and vector borne diseases, the application of Ecological niche models (ENM) used an enormous contribution in exactly delineating the suitable habitats of the vector. We developed an ENM with the objective of delineating the global suitability of AHSv outbreaks retrospective based on data records from 2005–2019. The model was developed in R software program using Biomod2 package with an Ensemble modeling technique. Predictive environmental variables like mean diurnal range, mean precipitation of driest month(mm), precipitation seasonality (cv), mean annual maximum temperature (oc), mean annual minimum temperature (oc) mean precipitation of warmest quarter(mm), mean precipitation of coldest quarter (mm) mean annual precipitation (mm), solar radiation (kj /day), elevation/altitude (m), wind speed (m/s) were used to develop the model. From these variables, solar radiation, mean maximum temperature, average annual precipitation, altitude and precipitation seasonality contributed 36.83%, 17.1%, 14.34%, 7.61%, and 6.4%, respectively. The model depicted the sub-Sahara African continent as the most suitable area for the virus. Mainly Senegal, Burkina Faso, Niger, Nigeria, Ethiopia, Sudan, Somalia, South Africa, Zimbabwe, Madagascar and Malawi are African countries identified as highly suitable countries for the virus. Besides, OIE-listed disease-free countries like India, Australia, Brazil, Paraguay and Bolivia have been found suitable for the virusThis model can be used as an epidemiological tool in planning control and surveillance of diseases nationally or internationally.


Sign in / Sign up

Export Citation Format

Share Document