scholarly journals Trailing-edge zombie forests can increase population persistence in the face of climate change

2021 ◽  
Author(s):  
Robin R. Decker ◽  
Marissa L. Baskett ◽  
Alan Hastings

Climate-driven habitat shifts pose challenges for dispersal-limited, late-maturing taxa such as trees. Older trees are often the most reproductive individuals in the population, but as habitats shift, these individuals can be left behind in the trailing range edge, generating "zombie forests" that may persist long after the suitable habitat has shifted. Are these zombie forests vestiges of ecosystems past or do they play an ecological role? To understand how zombie forests affect population persistence, we developed a spatially explicit, stage-structured model of tree populations occupying a shifting habitat. Our model shows that seed dispersal from zombie forests to the range core can considerably increase the maximum rate of climate change that a population can withstand. Moreover, the entire core population can ultimately descend from recruitment-limited zombie forests, highlighting their demographic value. Our results suggest that preserving trailing-edge zombie forests can greatly increase population persistence in the face of climate change.

2014 ◽  
Vol 41 (6) ◽  
pp. 522 ◽  
Author(s):  
Yongyut Trisurat ◽  
Budsabong Kanchanasaka ◽  
Holger Kreft

Context Tropical ecosystems are widely recognised for their high species richness and outstanding concentrations of rare and endemic species. Previous studies either focussed on the effects of deforestation or climate change, whereas studies on the combined effects of these two major threats are limited. Aims This research aimed to model current and future distributions of medium- to large-sized mammal species on the basis of different land-use and climate-change scenarios in 2050 and to assess whether the predicted effects of land-use change are greater than those of climate change and whether the combined effects of these drivers are greater than those of either individual driver. Methods The present article demonstrates a method for combining nationwide wildlife-inventory data, spatially explicit species-distribution models, current and predicted future bioclimatic variables, other biophysical factors and human disturbance to map distributions of mammal species on the basis of different land-use and climate-change scenarios and to assess the role of protected areas in conservation planning. Key results Seventeen medium- to large-sized mammal species were selected for modelling. Most selected species were predicted to lose suitable habitat if the remaining forest cover declines from the current level of 57% to 50% in 2050. The predicted effects of deforestation were stronger than the effects of climate change. When climate and land-use change were combined, the predicted impacts were more severe. Most species would lose suitable habitat and the average shift in species distribution was greater than 40%. Conclusions The predicted effects were positive for only a few species and negative for most species. Current and future centres of mammal-species richness were predicted in large and contiguous protected forests and the average contribution of existing and proposed protected areas in protecting the focal species will increase from 73% to 80% across all scenarios. Implications The present research advances the current understanding of the ecology of 17 medium- to large-sized mammal species with conservation relevance and the factors that affect their distributions at the landscape scale. In addition, the research demonstrated that spatially explicit models and protected areas are effective means to contribute to protection of mammal species in current and future land-use and climate-change scenarios.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 989 ◽  
Author(s):  
Louis R. Iverson ◽  
Anantha M. Prasad ◽  
Matthew P. Peters ◽  
Stephen N. Matthews

We modeled and combined outputs for 125 tree species for the eastern United States, using habitat suitability and colonization potential models along with an evaluation of adaptation traits. These outputs allowed, for the first time, the compilation of tree species’ current and future potential for each unit of 55 national forests and grasslands and 469 1 × 1 degree grids across the eastern United States. A habitat suitability model, a migration simulation model, and an assessment based on biological and disturbance factors were used with United States Forest Service Forest Inventory and Analysis data to evaluate species potential to migrate or infill naturally into suitable habitats over the next 100 years. We describe a suite of variables, by species, for each unique geographic unit, packaged as summary tables describing current abundance, potential future change in suitable habitat, adaptability, and capability to cope with the changing climate, and colonization likelihood over 100 years. This resulting synthesis and summation effort, culminating over two decades of work, provides a detailed data set that incorporates habitat quality, land cover, and dispersal potential, spatially constrained, for nearly all the tree species of the eastern United States. These tables and maps provide an estimate of potential species trends out 100 years, intended to deliver managers and publics with practical tools to reduce the vast set of decisions before them as they proactively manage tree species in the face of climate change.


2020 ◽  
Vol 375 (1794) ◽  
pp. 20190117 ◽  
Author(s):  
Joshua J. Lawler ◽  
D. Scott Rinnan ◽  
Julia L. Michalak ◽  
John C. Withey ◽  
Christopher R. Randels ◽  
...  

Expanding the network of protected areas is a core strategy for conserving biodiversity in the face of climate change. Here, we explore the impacts on reserve network cost and configuration associated with planning for climate change in the USA using networks that prioritize areas projected to be climatically suitable for 1460 species both today and into the future, climatic refugia and areas likely to facilitate climate-driven species movements. For 14% of the species, networks of sites selected solely to protect areas currently climatically suitable failed to provide climatically suitable habitat in the future. Protecting sites climatically suitable for species today and in the future significantly changed the distribution of priority sites across the USA—increasing relative protection in the northeast, northwest and central USA. Protecting areas projected to retain their climatic suitability for species cost 59% more than solely protecting currently suitable areas. Including all climatic refugia and 20% of areas that facilitate climate-driven movements increased the cost by another 18%. Our results indicate that protecting some types of climatic refugia may be a relatively inexpensive adaptation strategy. Moreover, although addressing climate change in conservation plans will have significant implications for the configuration of networks, the increased cost of doing so may be relatively modest. This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.


Nature ◽  
2020 ◽  
Vol 580 (7804) ◽  
pp. 456-456 ◽  
Author(s):  
Judy Lawrence ◽  
Marjolijn Haasnoot ◽  
Robert Lempert

2017 ◽  
Author(s):  
Robert E. Keane ◽  
Lisa M. Holsinger ◽  
Mary F. Mahalovich ◽  
Diana F. Tomback

2017 ◽  
Vol 7 (1) ◽  
pp. 6-18 ◽  
Author(s):  
Alejandro Yáñez-Arancibia ◽  
John W. Day

The arid border region that encompasses the American Southwest and the Mexican northwest is an area where the nexus of water scarcity and climate change in the face of growing human demands for water, emerging energy scarcity, and economic change comes into sharp focus.


2020 ◽  
Vol 2 (8) ◽  
pp. 101-110
Author(s):  
N. N. ILYSHEVA ◽  
◽  
E. V. KARANINA ◽  
G. P. LEDKOV ◽  
E. V. BALDESKU ◽  
...  

The article deals with the problem of achieving sustainable development. The purpose of this study is to reveal the relationship between the components of sustainable development, taking into account the involvement of indigenous peoples in nature conservation. Climate change makes achieving sustainable development more difficult. Indigenous peoples are the first to feel the effects of climate change and play an important role in the environmental monitoring of their places of residence. The natural environment is the basis of life for indigenous peoples, and biological resources are the main source of food security. In the future, the importance of bioresources will increase, which is why economic development cannot be considered independently. It is assumed that the components of resilience are interrelated and influence each other. To identify this relationship, a model for the correlation of sustainable development components was developed. The model is based on the methods of correlation analysis and allows to determine the tightness of the relationship between economic development and its ecological footprint in the face of climate change. The correlation model was tested on the statistical materials of state reports on the environmental situation in the Khanty-Mansiysk Autonomous Okrug – Yugra. The approbation revealed a strong positive relationship between two components of sustainable development of the region: economy and ecology.


Sign in / Sign up

Export Citation Format

Share Document