scholarly journals SWR1C catalyzes H2A.Z deposition by coupling ATPase activity to the nucleosome acidic patch

2021 ◽  
Author(s):  
Nathan Gioacchini ◽  
Craig L Peterson

The SWR1C chromatin remodeling enzyme catalyzes the ATP-dependent exchange of nucleosomal histone H2A for the histone variant H2A.Z, a key variant involved in a multitude of nuclear functions. How the 14-subunit SWR1C engages the nucleosomal substrate remains largely unknown. Numerous studies on the ISWI, CHD1, and SWI/SNF families of chromatin remodeling enzymes have demonstrated an essential role for the nucleosomal acidic patch for remodeling activity, however a role for this nucleosomal epitope in nucleosome editing by SWR1C has not been tested. Here, we employ a variety of biochemical assays to demonstrate an essential role for the nucleosomal acidic patch in the H2A.Z exchange reaction. Nucleosomes lacking acidic patch residues retain the ability to stimulate the ATPase activity of SWR1C, implicating a role in coupling the energy of ATP hydrolysis to H2A/H2B dimer eviction. A conserved arginine-rich region within the Swc5 subunit is identified that interacts with the acidic patch and is found to be essential for dimer exchange activity. Together these findings provide new insights into how SWR1C engages its nucleosomal substrate to promote efficient H2A.Z deposition.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Gao ◽  
Songguang Yang ◽  
Lianyu Yuan ◽  
Yuhai Cui ◽  
Keqiang Wu

Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira) domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins inOryza sativaare widely expressed, especially in pistils. In addition,OsCHB701andOsHDMA701were downregulated by cold stress, whereasOsHDMA701andOsHDMA702were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress.


1972 ◽  
Vol 129 (3) ◽  
pp. 775-779 ◽  
Author(s):  
Shailesh P. Banerjee ◽  
Shirley M. E. Wong

1. K+ did not affect the Mg2+-dependent transphosphorylation but markedly increased the Na+-stimulated ADP–ATP exchange rate mediated by a microsomal fraction from guinea-pig kidney. 2. Rb+, Cs+, NH4+ and Li+ were equally effective in stimulating the Na+-dependent ADP–ATP exchange activity. 3. Treatment of the microsomal fraction with N-ethylmaleimide or increased concentrations of Mg2+ prevented stimulation of the Na+-dependent exchange reaction by K+. 4. Ouabain (2.5μm) inhibited ATP hydrolysis by 33% but did not decrease the K+-stimulated Na+-dependent ADP–ATP exchange rate. 5. A possible mechanism for stimulation of exchange activity by K+ is discussed.


2008 ◽  
Vol 19 (6) ◽  
pp. 2661-2672 ◽  
Author(s):  
Soomin Shim ◽  
Samuel A. Merrill ◽  
Phyllis I. Hanson

The AAA+ ATPase VPS4 plays an essential role in multivesicular body biogenesis and is thought to act by disassembling ESCRT-III complexes. VPS4 oligomerization and ATPase activity are promoted by binding to LIP5. LIP5 also binds to the ESCRT-III like protein CHMP5/hVps60, but how this affects its function remains unclear. Here we confirm that LIP5 binds tightly to CHMP5, but also find that it binds well to additional ESCRT-III proteins including CHMP1B, CHMP2A/hVps2–1, and CHMP3/hVps24 but not CHMP4A/hSnf7–1 or CHMP6/hVps20. LIP5 binds to a different region within CHMP5 than within the other ESCRT-III proteins. In CHMP1B and CHMP2A, its binding site encompasses sequences at the proteins' extreme C-termini that overlap with “MIT interacting motifs” (MIMs) known to bind to VPS4. We find unexpected evidence of a second conserved binding site for VPS4 in CHMP2A and CHMP1B, suggesting that LIP5 and VPS4 may bind simultaneously to these proteins despite the overlap in their primary binding sites. Finally, LIP5 binds preferentially to soluble CHMP5 but instead to polymerized CHMP2A, suggesting that the newly defined interactions between LIP5 and ESCRT-III proteins may be regulated by ESCRT-III conformation. These studies point to a role for direct binding between LIP5 and ESCRT-III proteins that is likely to complement LIP5's previously described ability to regulate VPS4 activity.


1992 ◽  
Vol 2 (2) ◽  
pp. 105-111 ◽  
Author(s):  
S. Sánchez-Nieto ◽  
R. Rodríguez-Sotres ◽  
P. González-Romo ◽  
I. Bernal-Lugo ◽  
M. Gavilanes-Ruíz

AbstractThe effectiveness of ATPase in germinated seed may play an important role in the vigour of germination. The activities of tonoplast and plasma membrane ATPases in two maize (Zea mays L.) lines with different vigour of germination were determined. ATP hydrolysis was measured in microsomal fractions from coleoptiles along with the responses to specific inhibitors for the plasma membrane, tonoplast and mitochondrial ATPases as well as for acid phosphatase. Nitrate-sensitive ATPase activity was 1.5–3.0 times lower in the low-vigour line than in the high-vigour line. Kinetic analysis of ATP hydrolysis at different substrate concentrations revealed the existence of two enzymes in the microsomal fractions of the two lines. The Vmax of enzyme 1 in the low-vigour line was a third of that in the high-vigour line. This enzyme was identified as the nitrate-sensitive or tonoplast ATPase on the basis of measurements of ATP hydrolysis in the presence of specific inhibitors at high (8.12mm) and low (0.77mm) ATP concentrations.


Author(s):  
Nicole J. Wayne ◽  
Katherine E. Dembny ◽  
Tyler Pease ◽  
Farrin Saba ◽  
Xiaohong Zhao ◽  
...  

The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington’s disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [ RNQ + ] and [ PSI + ] prions. When we inactivate Hsp104 in the presence of prion, yeast have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103; whereas with active Hsp104, HttQ103 aggregates slowly accumulate due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates, but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103, but not HttQ103P.


2000 ◽  
Vol 352 (1) ◽  
pp. 165-173 ◽  
Author(s):  
Sang Yeul HAN ◽  
Dong Yoon PARK ◽  
Sang Dai PARK ◽  
Seung Hwan HONG

In this study we show the interaction of N-ethylmaleimide-sensitive fusion protein (NSF) with a small GTP-binding protein, Rab6. NSF is an ATPase involved in the vesicular transport within eukaryotic cells. Using the yeast two-hybrid system, we have isolated new NSF-binding proteins from the rat lung cDNA library. One of them was Rab6, which is involved in the vesicular transport within the Golgi and trans-Golgi network as a Ras-like GTPase. We demonstrated that the N-terminal domain of NSF interacted with the C-terminal domain of Rab6, and these proteins were co-immunoprecipitated from the rat brain extract. This interaction was maintained preferentially in the presence of hydrolysable ATP. Recombinant NSF-His6 can also bind to C-terminal Rab6–glutathione S-transferase under the conditions to allow the ATP hydrolysis. Surprisingly, Rab6 stimulates the ATPase activity of NSF by approx. 2-fold as does α-soluble NSF attachment protein receptor. Anti-Rab6 polyclonal antibodies significantly inhibited the Rab6-stimulated ATPase activity of NSF. Furthermore, we found that Rab3 and Rab4 can also associate with NSF and stimulate its ATPase activity. Taken together, we propose a model in which Rab can form an ATP hydrolysis-regulated complex with NSF, and function as a signalling molecule to deliver the signal of vesicle fusion through the interaction with NSF.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0238754
Author(s):  
Melissa Martinez ◽  
Gregory A. Fendley ◽  
Alexandra D. Saxberg ◽  
Maria E. Zoghbi

Heme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, so intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors, and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin’s effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.


1987 ◽  
Vol 7 (9) ◽  
pp. 3124-3130 ◽  
Author(s):  
D Ganea ◽  
P Moore ◽  
L Chekuri ◽  
R Kucherlapati

We have characterized an enzymatic activity from human cell nuclei which is capable of catalyzing strand exchange between homologous DNA sequences. The strand exchange activity was Mg2+ dependent and required ATP hydrolysis. In addition, it was capable of promoting reannealing of homologous DNA sequences and could form nucleoprotein networks in a fashion reminiscent of purified bacterial RecA protein. Using an in vitro recombination assay, we also showed that the strand exchange activity was biologically important. The factor(s) responsible for the activity has been partially purified.


1991 ◽  
Vol 278 (2) ◽  
pp. 375-380 ◽  
Author(s):  
T L Kirley

The Mg(2+)-ATPase present in rabbit skeletal-muscle transverse tubules is an integral membrane enzyme which has been solubilized and purified previously in this laboratory [Kirley (1988) J. Biol. Chem. 263, 12682-12689]. The present study indicates that, in addition to the approx. 100 kDa protein (distinct from the sarcoplasmic-reticulum Ca(2+)-ATPase) seen previously to co-purify with the Mg(2+)-ATPase activity, there are also proteins having molecular masses of 160, 70 and 43 kDa. The 70 and 43 kDa glycosylated proteins (50 and 31 kDa after deglycosylation) are difficult to detect by SDS/PAGE before deglycosylation, owing to the broadness of the bands. Additional purification procedures, cross-linking studies and chemical and enzymic deglycosylation studies were undertaken to determine the structure and relationship of these proteins. Both the 97 and 160 kDa proteins were demonstrated to be N-glycosylated at multiple sites, the 97 kDa protein being reduced to a peptide core of 84 kDa and the 160 kDa protein to a peptide core of 131 kDa after deglycosylation. Although the Mg(2+)-ATPase activity is resistant to a number of chemical modification reagents, cross-linking inactivates the enzyme at low concentrations. This inactivation is accompanied by cross-linking of two 97 kDa molecules to one another, suggesting that the 97 kDa protein is involved in ATP hydrolysis. The existence of several proteins along with the inhibition of ATPase activity by cross-linking is consistent with the interpretation of the susceptibility of this enzyme to inactivation by most detergents as being due to the disruption of a protein complex of associated subunits by the inactivating detergents. The 160 kDa glycoprotein can be partially resolved from the Mg(2+)-ATPase activity, and is identified by its N-terminal amino acid sequence as angiotensin-converting enzyme.


Sign in / Sign up

Export Citation Format

Share Document