scholarly journals Genetic evidence that uptake of the fluorescent analog 2NBDG occurs independently of known glucose transporters

2021 ◽  
Author(s):  
Lucas D'Souza ◽  
Stephen Wright ◽  
Deepta Bhattacharya

The fluorescent derivative of glucose, 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)-amino]-D-glucose (2NBDG), is a widely used surrogate reagent to visualize glucose uptake in live cells at single cell resolution. Using a model of CRISPR-Cas9 gene editing in 5TGM1 myeloma cells, we demonstrate that ablation of the glucose transporter gene Slc2a1 abrogates radioactive glucose uptake but has no effect on the magnitude or kinetics of 2NBDG import. Extracellular 2NBDG, but not NBD-fructose was transported by plasma cells into the cytoplasm suggesting specific activity that is unlinked to glucose import and that of chemically similar compounds. RNA-Seq analysis of primary plasma cells and the 5TGM1 myeloma cell line revealed expression of other candidate glucose transporters. Yet, deletion of these transporters individually or in combination with one another also had no impact on 2NBDG uptake. Ablation of the genes in the Slc29 and Slc35 families of nucleoside and nucleoside sugar transporters as well as the ATP-binding cassette (ABC) transporter family also failed to impact 2NBDG import. Thus, cellular uptake of 2NBDG is promoted by an unknown mechanism and is not a faithful indicator of glucose transport.

2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


2012 ◽  
Vol 303 (5) ◽  
pp. F766-F774 ◽  
Author(s):  
Rekha Yesudas ◽  
Russell Snyder ◽  
Thomas Abbruscato ◽  
Thomas Thekkumkara

Previously, we have demonstrated human angiotensin type 1 receptor (hAT1R) promoter architecture with regard to the effect of high glucose (25 mM)-mediated transcriptional repression in human proximal tubule epithelial cells (hPTEC; Thomas BE, Thekkumkara TJ. Mol Biol Cell 15: 4347–4355, 2004). In the present study, we investigated the role of glucose transporters in high glucose-mediated hAT1R repression in primary hPTEC. Cells were exposed to normal glucose (5.5 mM) and high glucose (25 mM), followed by determination of hyperglycemia-mediated changes in receptor expression and glucose transporter activity. Exposure of cells to high glucose resulted in downregulation of ANG II binding (4,034 ± 163.3 to 1,360 ± 154.3 dpm/mg protein) and hAT1R mRNA expression (reduced 60.6 ± 4.643%) at 48 h. Under similar conditions, we observed a significant increase in glucose uptake (influx) in cells exposed to hyperglycemia. Our data indicated that the magnitude of glucose influx is concentration and time dependent. In euglycemic cells, inhibiting sodium-glucose cotransporters (SGLTs) with phlorizin and facilitative glucose transporters (GLUTs) with phloretin decreased glucose influx by 28.57 ± 0.9123 and 54.33 ± 1.202%, respectively. However, inhibiting SGLTs in cells under hyperglycemic conditions decreased glucose influx by 53.67 ± 2.906%, while GLUT-mediated glucose uptake remained unaltered (57.67 ± 3.180%). Furthermore, pretreating cells with an SGLT inhibitor reversed high glucose-mediated downregulation of the hAT1R, suggesting an involvement of SGLT in high glucose-mediated hAT1R repression. Our results suggest that in hPTEC, hyperglycemia-induced hAT1R downregulation is largely mediated through SGLT-dependent glucose influx. As ANG II is an important modulator of hPTEC transcellular sodium reabsorption and function, glucose-mediated changes in hAT1R gene expression may participate in the pathogenesis of diabetic renal disease.


1989 ◽  
Vol 9 (10) ◽  
pp. 4187-4195 ◽  
Author(s):  
J C Vera ◽  
O M Rosen

We report the functional expression of two different mammalian facilitative glucose transporters in Xenopus oocytes. The RNAs encoding the rat brain and liver glucose transporters were transcribed in vitro and microinjected into Xenopus oocytes. Microinjected cells showed a marked increase in 2-deoxy-D-glucose uptake as compared with controls injected with water. 2-Deoxy-D-glucose uptake increased during the 5 days after microinjection of the RNAs, and the microinjected RNAs were stable for at least 3 days. The expression of functional glucose transporters was dependent on the amount of RNA injected. The oocyte-expressed transporters could be immunoprecipitated with anti-brain and anti-liver glucose transporter-specific antibodies. Uninjected oocytes expressed an endogenous transporter that appeared to be stereospecific and inhibitable by cytochalasin B. This transporter was kinetically and immunologically distinguishable from both rat brain and liver glucose transporters. The uniqueness of this transporter was confirmed by Northern (RNA) blot analysis. The endogenous oocyte transporter was responsive to insulin and to insulinlike growth factor I. Most interestingly, both the rat brain and liver glucose transporters, which were not insulin sensitive in the tissues from which they were cloned, responded to insulin in the oocyte similarly to the endogenous oocyte transporter. These data suggest that the insulin responsiveness of a given glucose transporter depends on the type of cell in which the protein is expressed. The expression of hexose transporters in the microinjected oocytes may help to identify tissue-specific molecules involved in hormonal alterations in hexose transport activity.


2017 ◽  
Vol 313 (4) ◽  
pp. C421-C429 ◽  
Author(s):  
Abraham J. Al-Ahmad

Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells.


2007 ◽  
Vol 292 (6) ◽  
pp. E1922-E1928 ◽  
Author(s):  
Edward J. Miller ◽  
Ji Li ◽  
Kevin M. Sinusas ◽  
Geoffrey D. Holman ◽  
Lawrence H. Young

Glucose uptake in the heart is mediated by specific glucose transporters (GLUTs) present on cardiomyocyte cell surface membranes. Metabolic stress and insulin both increase glucose transport by stimulating the translocation of glucose transporters from intracellular storage vesicles to the cell surface. Isolated perfused transgenic mouse hearts are commonly used to investigate the molecular regulation of heart metabolism; however, current methods to quantify cell surface glucose transporter content in intact mouse hearts are limited. Therefore, we developed a novel technique to directly assess the cell surface content of the cardiomyocyte glucose transporter GLUT4 in perfused mouse hearts, using a cell surface impermeant biotinylated bis-glucose photolabeling reagent (bio-LC-ATB-BGPA). Bio-LC-ATB-BGPA was infused through the aorta and cross-linked to cell surface GLUTs. Bio-LC-ATB-BGPA-labeled GLUT4 was recovered from cardiac membranes by streptavidin isolation and quantified by immunoblotting. Bio-LC-ATB-BGPA-labeling of GLUT4 was saturable and competitively inhibited by d-glucose. Stimulation of glucose uptake by insulin in the perfused heart was associated with parallel increases in bio-LC-ATB-BGPA-labeling of cell surface GLUT4. Bio-LC-ATB-BGPA also labeled cell surface GLUT1 in the perfused heart. Thus, photolabeling provides a novel approach to assess cell surface glucose transporter content in the isolated perfused mouse heart and may prove useful to investigate the mechanisms through which insulin, ischemia, and other stimuli regulate glucose metabolism in the heart and other perfused organs.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 58-60 ◽  
Author(s):  
Michael Kruse ◽  
Arezki Mahiout ◽  
Volker Kliem ◽  
Peter Kurz ◽  
Karl-Martin Koch ◽  
...  

To investigate whether the glucose uptake (GU) of human peritoneal mesothelial cells (HPMC) is mediated by glucose transporters and whether this uptake is influenced by interleukin 1–β (IL-1β), we measured 2-deoxy-(3H)-GU of HPMC in vitro, after exposing the cells for different times (two and 12 hours) to increasing concentrations (0.1, 1.0, and 2.0 ng/mL) of IL-1 β. To exclude a noncarrier-mediated transport, GU was also tested in the presence of cytochalasin B. All experiments were performed in triplicate in the cells of two donors. Cytochalasin B inhibits GU of HPMC almost completely. GU of HPMC is not stimulated by insulin. GU is stimulated by IL-1 β in a dose-dependent manner. These data indicate a GU of HPMC, which is mediated by a glucose transporter and stimulated by IL-1 β. The increased uptake of glucose from the dialysate In patients with peritonitis may be mediated by a (cytokineinduced) increased activity of HPMC glucose transporters.


1989 ◽  
Vol 9 (10) ◽  
pp. 4187-4195
Author(s):  
J C Vera ◽  
O M Rosen

We report the functional expression of two different mammalian facilitative glucose transporters in Xenopus oocytes. The RNAs encoding the rat brain and liver glucose transporters were transcribed in vitro and microinjected into Xenopus oocytes. Microinjected cells showed a marked increase in 2-deoxy-D-glucose uptake as compared with controls injected with water. 2-Deoxy-D-glucose uptake increased during the 5 days after microinjection of the RNAs, and the microinjected RNAs were stable for at least 3 days. The expression of functional glucose transporters was dependent on the amount of RNA injected. The oocyte-expressed transporters could be immunoprecipitated with anti-brain and anti-liver glucose transporter-specific antibodies. Uninjected oocytes expressed an endogenous transporter that appeared to be stereospecific and inhibitable by cytochalasin B. This transporter was kinetically and immunologically distinguishable from both rat brain and liver glucose transporters. The uniqueness of this transporter was confirmed by Northern (RNA) blot analysis. The endogenous oocyte transporter was responsive to insulin and to insulinlike growth factor I. Most interestingly, both the rat brain and liver glucose transporters, which were not insulin sensitive in the tissues from which they were cloned, responded to insulin in the oocyte similarly to the endogenous oocyte transporter. These data suggest that the insulin responsiveness of a given glucose transporter depends on the type of cell in which the protein is expressed. The expression of hexose transporters in the microinjected oocytes may help to identify tissue-specific molecules involved in hormonal alterations in hexose transport activity.


Parasitology ◽  
1994 ◽  
Vol 108 (S1) ◽  
pp. S73-S83 ◽  
Author(s):  
C. K. Langford ◽  
R. J. S. Burchmore ◽  
D. T. Hart ◽  
W. Wagner ◽  
S. M. Landfear

SUMMARYGlucose is utilized as a significant source of metabolic energy by Leishmania parasites. This sugar is accumulated by the parasite via a specific carrier-mediated transport system located in the parasite membrane. Parasites may also contain another transporter that shuttles glucose between the cytoplasm and the glycosome, a membrane-bound organelle where the early steps of glycolysis occur. The transport systems of both the insect stage promastigotes and the intracellular amastigotes have been characterized and shown to have kinetic properties that are consistent with the different physio-logical environments of the insect gut and the macrophage phagolysosome. Several genes have been cloned from Leishmania species which encode proteins with substantial sequence similarity to glucose transporters from mammals and lower eukaryotes. Two of these genes are expressed preferentially in the promastigote stage of the life cycle, where glucose is more readily available and more rapidly transported and metabolized than in the intracellular amastigotes. One of these two developmentally-regulated genes has been functionally expressed in Xenopus oocytes and shown to encode a glucose transporter. A third gene encodes a protein that is also a member of the glucose transporter family on the basis of sequence similarity and proposed secondary structure. However, the significant differences between this protein and the other two suggest that it is likely to transport a different substrate. Functional expression will be required to define the specific biochemical role of each gene within the parasite.


2019 ◽  
Vol 24 (2) ◽  
pp. 65-76
Author(s):  
Nathan Huerzeler ◽  
Vesna Petkovic ◽  
Marijana Sekulic-Jablanovic ◽  
Krystsina Kucharava ◽  
Matthew B. Wright ◽  
...  

Insulin receptors are expressed on nerve cells in the mammalian brain, but little is known about insulin signaling and the expression of the insulin receptor (IR) and glucose transporters in the cochlea. We performed immunohistochemistry and gene/protein expression analysis to characterize the expression pattern of the IR and glucose transporters in the mouse organ of Corti (OC). We also performed glucose uptake assays to explore the action of insulin and the effects of pioglitazone, an insulin sensitizer, on glucose transport in the OC. Western blots of protein extracts from OCs showed high expression of IR and glucose transporter 3 (GLUT3). Immunohistochemistry demonstrated that the IR is specifically expressed in the supporting cells of the OC. GLUT3 was found in outer and inner hair cells, in the basilar membrane (BM), the stria vascularis (SV), Reissner’s membrane and spiral ganglion neurons (SGN). Glucose transporter 1 (GLUT1) was detected at low levels in the BM, SV and Reissner’s membrane, and showed high expression in the SGN. Fluorescence glucose uptake assays revealed that hair cells take up glucose and that addition of insulin (10 nM or 1 µM) approximately doubled the rate of uptake. Pioglitazone conferred a small but nonsignificant potentiation of glucose uptake at the highest concentration of insulin. Gene expression analysis confirmed expression of IR, GLUT1 and GLUT3 mRNA in the OC. Pioglitazone significantly upregulated IR and GLUT1 mRNA expression, which was further increased by insulin. Together, these data show that insulin-stimulated glucose uptake occurs in the OC and may be associated with upregulation of both the IR and GLUT1.


Sign in / Sign up

Export Citation Format

Share Document