scholarly journals Chronic Alcohol Dysregulates Glutamatergic Function in the Basolateral Amygdala in a Projection- and Sex-Specific Manner

2021 ◽  
Author(s):  
Michaela Price ◽  
Brian McCool

Chronic intermittent ethanol (CIE) produces alcohol dependence, facilitates anxiety-like behavior, and increases post-CIE alcohol intake. The basolateral amygdala (BLA) is one of several brain regions that regulates anxiety-like behavior and alcohol intake through downstream projections. The BLA receives information from two distinct input pathways. Afferents from medial structures like the thalamus and prefrontal cortex enter the BLA through the stria terminalis whereas lateral cortical structures like the anterior insula cortex enter the BLA through the external capsule. CIE induces input- and sex-specific adaptations to glutamatergic function in the BLA. Previous studies sampled neurons throughout the BLA, but did not distinguish between projection-specific populations. The current study investigated BLA neurons that project to the NAC (BLA-NAC neurons) or the BNST (BLA-BNST neurons) as representative "reward" and "aversion" BLA neurons, and showed that CIE alters glutamatergic function and excitability in a projection- and sex-specific manner. CIE increases glutamate release from stria terminalis inputs only onto BLA-BNST neurons. At external capsule synapses, CIE increases postsynaptic glutamatergic function in male BLA-NAC neurons and female BLA-BNST neurons. Subsequent experiments demonstrated that CIE enhanced the excitability of male BLA-NAC neurons and BLA-BNST neurons in both sexes when glutamatergic but not GABAergic function was intact. Thus, CIE-mediated increased glutamatergic function facilitates hyperexcitability in male BLA-NAC neurons and BLA-BNST neurons of both sexes.

2019 ◽  
Author(s):  
Molly M. McGinnis ◽  
Brian C. Parrish ◽  
Brian A. McCool

AbstractA key feature of alcohol use disorder (AUD) is negative affect during withdrawal, which often contributes to relapse and is thought to be caused by altered brain function, especially in circuits that are important mediators of emotional behaviors. Both the agranular insular cortex (AIC) and the basolateral amygdala (BLA) regulate emotions and are sensitive to ethanol-induced changes in synaptic plasticity. The AIC and BLA are reciprocally connected, however, and the effects of chronic ethanol exposure on this circuit have yet to be explored. Here, we use a combination of optogenetics and electrophysiology to examine the pre- and postsynaptic changes that occur to AIC – BLA synapses following withdrawal from 7- or 10-days of chronic intermittent ethanol (CIE) exposure. While CIE/withdrawal did not alter presynaptic glutamate release probably from AIC inputs, withdrawal from 10, but not 7, days of CIE increased AMPA receptor-mediated postsynaptic function at these synapses. Additionally, NMDA receptor-mediated currents evoked by electrical stimulation of the external capsule, which contains AIC afferents, were also increased during withdrawal. Notably, a single subanesthetic dose of ketamine administered at the onset of withdrawal prevented the withdrawal-induced increases in both AMPAR and NMDAR postsynaptic function. Ketamine also prevented the withdrawal-induced increases in anxiety-like behavior measured using the elevated zero maze. Together, these findings suggest that chronic ethanol exposure increases postsynaptic function within the AIC – BLA circuit and that ketamine can prevent ethanol withdrawal-induced alterations in synaptic plasticity and negative affect.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xia Qin ◽  
Ye He ◽  
Na Wang ◽  
Jia-Xin Zou ◽  
Yong-Mei Zhang ◽  
...  

AbstractExposure to moderate level of stress during the perinatal period helps the organisms to cope well with stressful events in their later life, an effect known as stress inoculation. Amygdala is one of the kernel brain regions mediating stress-coping in the brain. However, little is known about whether early life stress may affect amygdala to have its inoculative effect. Here, we observed that moderate maternal separation (MS) from postnatal day 3 to day 21 (D3–21, 1 h per day) significantly alleviated the increased anxiety-like behavior induced by chronic social defeat stress (CSDS) in adulthood, suggesting an obvious inoculative effect of moderate MS. Further studies revealed that MS prevented CSDS-evoked augmentation of glutamatergic transmission onto principal neurons (PNs) in the basolateral amygdala (BLA) by inhibiting presynaptic glutamate release. By contrast, it did not affect GABAergic transmission in BLA PNs, as indicated by unaltered frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Moreover, the CSDS-induced increase of neuronal excitability was also mitigated by MS in BLA PNs. In conclusion, our results suggest that MS may have its inoculative effect through alleviating the influences of later life stress on the glutamatergic transmission and neuronal activity in amygdala neurons.


2021 ◽  
Vol 10 (7) ◽  
pp. 1475
Author(s):  
Waldemar Kryszkowski ◽  
Tomasz Boczek

Schizophrenia is a severe neuropsychiatric disease with an unknown etiology. The research into the neurobiology of this disease led to several models aimed at explaining the link between perturbations in brain function and the manifestation of psychotic symptoms. The glutamatergic hypothesis postulates that disrupted glutamate neurotransmission may mediate cognitive and psychosocial impairments by affecting the connections between the cortex and the thalamus. In this regard, the greatest attention has been given to ionotropic NMDA receptor hypofunction. However, converging data indicates metabotropic glutamate receptors as crucial for cognitive and psychomotor function. The distribution of these receptors in the brain regions related to schizophrenia and their regulatory role in glutamate release make them promising molecular targets for novel antipsychotics. This article reviews the progress in the research on the role of metabotropic glutamate receptors in schizophrenia etiopathology.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Bianca S Bono ◽  
Persephone A Miller ◽  
Nikita K Koziel Ly ◽  
Melissa J Chee

Abstract Fibroblast growth factor 21 (FGF21) has emerged as a critical endocrine factor for understanding the neurobiology of obesity, such as by the regulation thermogenesis, food preference, and metabolism, as well as for neuroprotection in Alzheimer’s disease and traumatic brain injury. FGF21 is synthesized primarily by the liver and pancreas then crosses the blood brain barrier to exert its effects in the brain. However, the sites of FGF21 action in the brain is not well-defined. FGF21 action requires the activation of FGF receptor 1c as well as its obligate co-receptor beta klotho (KLB). In order to determine the sites of FGF21 action, we mapped the distribution of Klb mRNA by in situ hybridization using RNAscope technology. We labeled Klb distribution throughout the rostrocaudal axis of male wildtype mice by amplifying Klb hybridization using tyramine signal amplification and visualizing Klb hybridization using Cyanine 3 fluorescence. The resulting Klb signal appears as punctate red “dots,” and each Klb neuron may express low (1–4 dots), medium (5–9 dots), or high levels (10+ dots) of Klb hybridization. We then mapped individual Klb expressing neuron to the atlas plates provided by the Allen Brain Atlas in order to determine Klb distribution within the substructures of each brain region, which are defined by Nissl-based parcellations of cytoarchitectural boundaries. The distribution of Klb mRNA is widespread throughout the brain, and the brain regions analyzed thus far point to notable expression in the hypothalamus, amygdala, hippocampus, and the cerebral cortex. The highest expression of Klb was localized to the suprachiasmatic nucleus in the hypothalamus, which contained low and medium Klb-expressing neurons in the lateral hypothalamic area and ventromedial hypothalamic nucleus while low expressing Klb neurons were seen in the paraventricular and dorsmedial hypothalamic nucleus. Hippocampal Klb expression was limited to the dorsal region and largely restricted to the pyramidal cell layer of the dentate gyrus, CA3, CA2, and CA1 but at low levels only. In the amygdala, low and medium Klb expressing cells were seen in lateral amygdala nucleus while low levels were observed in the basolateral amygdala nucleus. Cortical Klb expression analyzed thus far included low Klb-expressing neurons in the olfactory areas, including layers 2 and 3 of piriform cortex and nucleus of the lateral olfactory tract. These findings are consistent with the known roles of FGF21 in the central regulation of energy balance, but also implicates potentially wide-ranging effects of FGF21 such as in executive functions.


2013 ◽  
Vol 109 (3) ◽  
pp. 867-872 ◽  
Author(s):  
Geeta Sharma

Addition of newly generated neurons into mature neural circuits in the adult CNS responds to changes in neurotransmitter levels and is tightly coupled to the activity of specific brain regions. This postnatal neurogenesis contributes to plasticity of the olfactory bulb and hippocampus and is thought to play a role in learning and memory, context and odor discrimination, as well as perceptual learning. While acetylcholine plays an important role in odor discrimination and perceptual learning, its role in adult neurogenesis in the olfactory bulb has not been elucidated. In this study, I have examined the functional expression of nAChRs in progenitor cells of the rostral migratory stream (RMS) in the adult olfactory bulb of mice. I show that most of these cells in the RMS exhibit large nAChR-mediated calcium transients upon application of acetylcholine (ACh). Unlike in the hippocampus, the predominant functional nAChRs on progenitor cells are of α3β4 subtype. Interestingly, functional receptor expression is lost once progenitor cells mature, and are incorporated into the granule cell layer. Instead, nAChRs are now expressed on some presynaptic terminals and modulate glutamate release onto granule cells. My results imply that ACh is a part of the permissive niche and likely plays a role in development of progenitor cells.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Elizabeth D Kirby ◽  
Sandra E Muroy ◽  
Wayne G Sun ◽  
David Covarrubias ◽  
Megan J Leong ◽  
...  

Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain.


2011 ◽  
Vol 301 (4) ◽  
pp. R1032-R1043 ◽  
Author(s):  
Allison Brager ◽  
Rebecca A. Prosser ◽  
J. David Glass

Acamprosate suppresses alcohol intake and craving in recovering alcoholics; however, the central sites of its action are unclear. To approach this question, brain regions responsive to acamprosate were mapped using acamprosate microimplants targeted to brain reward and circadian areas implicated in alcohol dependence. mPer2 mutant mice with nonfunctional mPer2, a circadian clock gene that gates endogenous timekeeping, were included, owing to their high levels of ethanol intake and preference. Male wild-type (WT) and mPer2 mutant mice received free-choice (15%) ethanol/water for 3 wk. The ethanol was withdrawn for 3 wk and then reintroduced to facilitate relapse. Four days before ethanol reintroduction, mice received bilateral blank or acamprosate-containing microimplants releasing ∼50 ng/day into reward [ventral tegmental (VTA), peduculopontine tegmentum (PPT), and nucleus accumbens (NA)] and circadian [intergeniculate leaflet (IGL) and suprachiasmatic nucleus (SCN)] areas. The hippocampus was also targeted. Circadian locomotor activity was measured throughout. Ethanol intake and preference were greater in mPer2 mutants than in wild-type (WT) mice (27 g·kg−1·day−1 vs. 13 g·kg−1·day−1 and 70% vs. 50%, respectively; both, P < 0.05). In WTs, acamprosate in all areas, except hippocampus, suppressed ethanol intake and preference (by 40–60%) during ethanol reintroduction. In mPer2 mutants, acamprosate in the VTA, PPT, and SCN suppressed ethanol intake and preference by 20–30%. These data are evidence that acamprosate's suppression of ethanol intake and preference are manifest through actions within major reward and circadian sites.


2020 ◽  
pp. 287-296
Author(s):  
Daniel C. Javitt

Glutamate theories of schizophrenia were first proposed over 30 years ago and since that time have become increasingly accepted. Theories are supported by the ability of N-methyl-D-aspartate receptor (NMDAR) antagonists such as phencyclidine (PCP) or ketamine to induce symptoms that closely resemble those of schizophrenia. Moreover, NMDAR antagonists uniquely reproduce the level of negative symptoms and cognitive deficits observed in schizophrenia, suggesting that such models may be particularly appropriate to poor outcome forms of the disorder. As opposed to dopamine, which is most prominent within frontostriatal brain regions, glutamate neurons are present throughout cortex and subcortical structures. Thus, NMDAR theories predict widespread disturbances across cortical and thalamic pathways, including sensory brain regions. In auditory cortex, NMDAR play a critical role in the generation of mismatch negativity (MMN), which may therefore serve as a translational marker of NMDAR dysfunction across species. In the visual system, NMDAR play a critical role in function of the magnocellular visual system. Deficits in both auditory and visual processing contribute to social and communication deficits, which, in turn, lead to poor functional outcome. By contrast, NMDAR dysfunction within the frontohippocampal system may contribute to well described deficits in working memory, executive processing and long-term memory formation. Deficits in NMDAR function may be driven by disturbances in presynaptic glutamate release, impaired metabolism of NMDAR modulators such as glycine or D-serine, or intrinsic abnormalities in NMDAR themselves.


Sign in / Sign up

Export Citation Format

Share Document