scholarly journals Homologous or Heterologous Booster of Inactivated Vaccine Reduces SARS-CoV-2 Omicron Variant Escape from Neutralizing Antibodies

2021 ◽  
Author(s):  
Xun Wang ◽  
Xiaoyu Zhao ◽  
Jieyu Song ◽  
Jing Wu ◽  
Yuqi Zhu ◽  
...  

The massive and rapid transmission of SARS-CoV-2 has led to the emergence of several viral variants of concern (VOCs), with the most recent one, B.1.1.529 (Omicron), which accumulated a large number of spike mutations, raising the specter that this newly identified variant may escape from the currently available vaccines and therapeutic antibodies. Using VSV-based pseudovirus, we found that Omicron variant is markedly resistant to neutralization of sera form convalescents or individuals vaccinated by two doses of inactivated whole-virion vaccines (BBIBP-CorV). However, a homologous inactivated vaccine booster or a heterologous booster with protein subunit vaccine (ZF2001) significantly increased neutralization titers to both WT and Omicron variant. Moreover, at day 14 post the third dose, neutralizing antibody titer reduction for Omicron was less than that for convalescents or individuals who had only two doses of the vaccine, indicating that a homologous or heterologous booster can reduce the Omicron escape from neutralizing. In addition, we tested a panel of 17 SARS-CoV-2 monoclonal antibodies (mAbs). Omicron resists 7 of 8 authorized/approved mAbs, as well as most of the other mAbs targeting distinct epitopes on RBD and NTD. Taken together, our results suggest the urgency to push forward the booster vaccination to combat the emerging SARS-CoV-2 variants.

2021 ◽  
Author(s):  
Tsun-Yung Kuo ◽  
Chia-En Lien ◽  
Yi-Jiun Lin ◽  
Meei-Yun Lin ◽  
Chung-Chin Wu ◽  
...  

AbstractThe current fight against COVID-19 is compounded by the Variants of Concern (VoCs), which can diminish the effectiveness of vaccines, increase viral transmission and severity of disease. MVC-COV1901 is a protein subunit vaccine based on the prefusion SARS-CoV-2 spike protein (S-2P) adjuvanted with CpG 1018 and aluminum hydroxide. Here we used the Delta variant to challenge hamsters innoculated with S-2P based on the ancestral strain or the Beta variant in two-dose or three-dose regimens. Two doses of ancestral S-2P followed by the third dose of Beta variant S-2P was shown to induce the highest neutralizing antibody titer against live SARS-CoV-2 of the ancestral strain as well as all VoCs. All regimens of vaccination were able to protect hamsters from SARS-CoV-2 Delta variant challenge and reduce lung live virus titer. Three doses of vaccination significantly reduced lung viral RNA titer, regardless of using the ancestral or Beta variant S-2P as the third dose. Based on the immunogenicity and viral challenge data, two doses of ancestral S-2P followed by the third dose of Beta variant S-2P could induce broad and potent immune response against the variants.


2021 ◽  
Author(s):  
Vincent Pavot ◽  
Catherine Berry ◽  
Michael Kishko ◽  
Natalie Anosova ◽  
Dean Huang ◽  
...  

Abstract The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies has raised concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated in preclinical models and in human clinical trials that our SARS-CoV-2 recombinant spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naïve subjects. Here, the objective was to document the potency of various booster vaccine formulations in macaques previously vaccinated with mRNA or protein subunit vaccine candidates. We show that one booster dose of AS03-adjuvanted CoV2 preS dTM, D614 (parental) or B.1.351 (Beta), in monovalent or bivalent (D614 + B.1.351) formulations, significantly boosted pre-existing neutralizing antibodies and elicited high and stable cross-neutralizing antibodies covering the four known SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) and, unexpectedly, SARS-CoV-1, in primed macaques. Interestingly, the non-adjuvanted CoV2 preS dTM B.1.351 vaccine formulation also significantly boosted and broadened the neutralizing antibody responses. Our findings show that these vaccine candidates used as a booster have the potential to offer cross-protection against a broad spectrum of variants. This has important implications for vaccine control of SARS-CoV-2 variants of concern and informs on the benefit of a booster with our vaccine candidates currently under evaluation in phase 2 and 3 clinical trials (NCT04762680 and NCT04904549).


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Shuo Song ◽  
Bing Zhou ◽  
Lin Cheng ◽  
Weilong Liu ◽  
Qing Fan ◽  
...  

AbstractThe current COVID-19 pandemic caused by constantly emerging SARS-CoV-2 variants still poses a threat to public health worldwide. Effective next-generation vaccines and optimized booster vaccination strategies are urgently needed. Here, we sequentially immunized mice with a SARS-CoV-2 wild-type inactivated vaccine and a heterologous mutant RBD vaccine, and then evaluated their neutralizing antibody responses against variants including Beta, Delta, Alpha, Iota, Kappa, and A.23.1. These data showed that a third booster dose of heterologous RBD vaccine especially after two doses of inactivated vaccines significantly enhanced the GMTs of nAbs against all SARS-CoV-2 variants we tested. In addition, the WT and variants all displayed good cross-immunogenicity and might be applied in the design of booster vaccines to induce broadly neutralizing antibodies.


2021 ◽  
Author(s):  
Vincent Pavot ◽  
Catherine Berry ◽  
Michael Kishko ◽  
Natalie G. Anosova ◽  
Dean Huang ◽  
...  

AbstractThe emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies has raised concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated in preclinical models and in human clinical trials that our SARS-CoV-2 recombinant spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naïve subjects. Here, the objective was to document the potency of various booster vaccine formulations in macaques previously vaccinated with mRNA or protein subunit vaccine candidates.We show that one booster dose of AS03-adjuvanted CoV2 preS dTM, D614 (parental) or B.1.351 (Beta), in monovalent or bivalent (D614 + B.1.351) formulations, significantly boosted pre-existing neutralizing antibodies and elicited high and stable cross-neutralizing antibodies covering the four known SARS-CoV-2 variants of concern (Alpha, Beta, Gamma and Delta) and, unexpectedly, SARS-CoV-1, in primed macaques. Interestingly, the non-adjuvanted CoV2 preS dTM B.1.351 vaccine formulation also significantly boosted and broadened the neutralizing antibody responses.Our findings show that these vaccine candidates used as a booster have the potential to offer cross-protection against a broad spectrum of variants. This has important implications for vaccine control of SARS-CoV-2 variants of concern and informs on the benefit of a booster with our vaccine candidates currently under evaluation in phase 2 and 3 clinical trials (NCT04762680 and NCT04904549).


2021 ◽  
Author(s):  
Noa Eliakim Raz ◽  
Amos Stemmer ◽  
Yaara Leibovici-Weissman ◽  
Asaf Ness ◽  
Muhammad Awwad ◽  
...  

BACKGROUND Age and frailty are strong predictors of COVID-19 mortality. After the second BNT162b2 dose, immunity wanes faster in older (≥65 years) versus younger adults. The durability of response after the third vaccine is unclear. METHODS This prospective cohort study included healthcare workers/family members ≥60 years who received a third BNT162b2 dose. Blood samples were drawn immediately before (T0), 10-19 (T1), and 74-103 (T2) days after the third dose. Antispike IgG titers were determined using a commercial assay, seropositivity was defined as ≥50 AU/mL. Neutralizing antibody titers were determined at T2. Adverse events, COVID-19 infections, and clinical frailty scale (CFS) levels were documented. RESULTS The analysis included 97 participants (median age, 70 years [IQR, 66-74], 61% women, 58% CFS level 2). IgG titers, which increased significantly from T0 to T1 (medians, 440 AU/mL [IQR, 294-923] and 25,429 [14,203-36,114] AU/mL, respectively; P<0.001), decreased significantly by T2, but all remained seropositive (median, 8,306 AU/mL [IQR, 4595-14,701], P<0.001 vs T1). In a multivariable analysis, only time from the first vaccine was significantly associated with lower IgG levels at T2 (P=0.004). At T2, 60 patients were evaluated for neutralizing antibodies; all were seropositive (median, 1,294 antibody titer [IQR, 848-2,072]). Neutralizing antibody and antispike IgG levels were correlated (R=0.6, P<0.001). No major adverse events or COVID-19 infections were reported. CONCLUSIONS Antispike IgG and neutralizing antibodies levels remain adequate 3 months after the third BNT162b2 vaccine in healthy adults ≥60 years, although the decline in IgG is concerning. A third vaccine dose in this population should be top priority.


2021 ◽  
Author(s):  
Neil C Dalvie ◽  
Lisa H Tostanoski ◽  
Sergio A Rodriguez-Aponte ◽  
Kawaljit Kaur ◽  
Sakshi Bajoria ◽  
...  

Vaccines against SARS-CoV-2 have been distributed at massive scale in developed countries, and have been effective at preventing COVID-19. Access to vaccines is limited, however, in low- and middle-income countries (LMICs) due to insufficient supply, high costs, and cold storage requirements. New vaccines that can be produced in existing manufacturing facilities in LMICs, can be manufactured at low cost, and use widely available, proven, safe adjuvants like alum, would improve global immunity against SARS-CoV-2. One such protein subunit vaccine is produced by the Serum Institute of India Pvt. Ltd. and is currently in clinical testing. Two protein components, the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen virus-like particles (VLPs), are each produced in yeast, which would enable a low-cost, high-volume manufacturing process. Here, we describe the design and preclinical testing of the RBD-VLP vaccine in cynomolgus macaques. We observed titers of neutralizing antibodies (>104) above the range of protection for other licensed vaccines in non-human primates. Interestingly, addition of a second adjuvant (CpG1018) appeared to improve the cellular response while reducing the humoral response. We challenged animals with SARS-CoV-2, and observed a ~3.4 and ~2.9 log10 reduction in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, compared to sham controls. These results inform the design and formulation of current clinical COVID-19 vaccine candidates like the one described here, and future designs of RBD-based vaccines against variants of SARS-CoV-2 or other betacoronaviruses.


Author(s):  
Abigail E. Powell ◽  
Kaiming Zhang ◽  
Mrinmoy Sanyal ◽  
Shaogeng Tang ◽  
Payton A. Weidenbacher ◽  
...  

AbstractDevelopment of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.


2021 ◽  
Author(s):  
Amani A Saleh ◽  
Mohamed A Saad ◽  
Islam Ryan ◽  
Magdy Amin ◽  
Mohamed I Shindy ◽  
...  

Abstract Background Current worldwide pandemic COVID-19 with high numbers of mortality rates and huge economic problems require an urgent demand for safe and effective vaccine development. Inactivated SARS-CoV2 vaccine with alum. Hydroxide can play an important role in reducing the impacts of the COVID-19 pandemic. In this study, vaccine efficacy was evaluated through the detection of the neutralizing antibodies that protect mice from challenge with SARS-CoV 2 three weeks after the 2nd dose. We conclude that the vaccine described here has safety and desirable properties, and our data support further development and plans for clinical trials. Methods Characterized SARS-COV-2 strain, severe acute respiratory syndrome coronavirus 2 isolates (SARS-CoV-2/human/EGY/Egy-SERVAC/2020) with accession numbers; MT981440; MT981439; MT981441; MT974071; MT974069, and MW250352 at GenBank were isolated from Egyptian patients SARS-CoV-2-positive. Development of inactivated vaccine was carried out in a BSL—3 facilities and the immunogenicity was determined in mice at two doses (55 μg and 100 μg per dose). Results The distinct cytopathic effect (CPE) induced by SARS-COV-2 propagation on Vero cell monolayers and the viral particles were identified as Coronaviridae by transmission electron microscopy and RT-PCR on infected cells cultures. Immunogenicity of the developed vaccine indicated the high antigen-binding and neutralizing antibody titers, regardless of the dose concentration, with excellent safety profiles and no deaths or clinical symptoms in mice groups. The efficacy of the inactivated vaccine formulation was tested by the wild virus challenge of the vaccinated mice and viral replication detection in lung tissues. Conclusions Vaccinated mice recorded complete protection from challenge infection via inhibition of SARS-COV-2 replication in the lung tissues of mice following virus challenge, regardless of the level of serum neutralizing antibodies. This finding will support future trials for the evaluation of an applicable SARS-CoV-2 vaccine candidate.


Author(s):  
Yihao Liu ◽  
Qin Zeng ◽  
Caiguanxi Deng ◽  
Mengyuan Li ◽  
Liubing Li ◽  
...  

AbstractSARS-CoV-2 inactivated vaccines have shown remarkable efficacy in clinical trials, especially in reducing severe illness and casualty. However, the waning of humoral immunity over time has raised concern over the durability of immune memory following vaccination. Thus, we conducted a non-randomized trial among the healthcare professionals (HCWs) to investigate the long-term sustainability of SARS-CoV-2-specific B cells and T cells stimulated by inactivated vaccine and the potential need for a third booster dose for the HCWs. Although neutralizing antibodies elicited by the standard two-dose vaccination schedule dropped from a peak of 31.2 AU/ml to 9.2 AU/ml 5 months after the second vaccination, spike-specific memory B and T cells were still detectable, forming the basis for a quick recall response. As expected, the faded humoral immune response was vigorously elevated to 66.8 AU/ml by 7.2 folds 1 week after the third dose along with abundant spike-specific circulating follicular helper T cells in parallel. Meanwhile, spike-specific CD4+ and CD8+ T cells were also robustly elevated by 5.9 and 2.7 folds respectively. Robust expansion of memory pools by the third dose potentiated greater durability of protective immune responses. Another key finding in this trial was that HCWs with low serological response to 2 doses were not truly “no responders” but fully equipped with immune memory that could be quickly recalled by a third dose even 5 months after the second vaccination. Collectively, these data provide insights into the generation of long-term immunological memory by the inactivated vaccine, which has implications for future booster strategies that the frontline HCWs, individuals with low serological response to 2 dose of vaccine and immune compromised patients could benefit from a third dose of inactivated vaccine.


Sign in / Sign up

Export Citation Format

Share Document