scholarly journals Effects of homoeologous exchange on gene expression and alternative splicing in a newly formed allotetraploid wheat

2021 ◽  
Author(s):  
Zhibin Zhang ◽  
Hongwei Xun ◽  
Ruili Lv ◽  
Xiaowan Gou ◽  
Xintong Ma ◽  
...  

Homoeologous exchange (HE) is a major mechanism generating post-polyploidization genetic variation with important evolutionary consequences. However, the direct impacts of HE without entangling with additional evolutionary forces on gene expression remains to be fully understood. Here, we analyzed high-throughput RNA-seq data of young leaves from individuals of a synthetic allotetraploid wheat (AADD), which contain variable numbers of HEs. We aimed to investigate if and to which extent HE directly impacts gene expression and alternative splicing (AS). We found that HE impacts expression of genes located within HE regions primarily via cis-acting dosage effect, which led to significant changes in the total expression of homoeolog pairs, especially for homoeologs whose original expression was biased. In parallel, HE influences expression of a large amount of genes residing in non-HE regions by trans-regulation leading to convergent expression of homoeolog pairs. Intriguingly, when taking into account of the original relative homoeolog expression states, homoeolog pairs under trans-effect are more prone to showing convergent response to HE whereas those under cis-effect trended to show subgenome-specific expression. Moreover, HE induced quantitative, largely individual-specific, changes of alternative splicing (AS) events. Like homoeologs expression, homoeo-AS events which related to trans effect were more responsive to HE. HE therefore exerts multifaceted immediate effects on gene expression and, to a less extent, also transcript diversity in nascent allopolyploidy.

2020 ◽  
Author(s):  
Stevie A. Bain ◽  
Hollie Marshall ◽  
Laura Ross

AbstractSexual dimorphism is exhibited in many species across the tree of life with many phenotypic differences mediated by differential expression and alternative splicing of genes present in both sexes. However, the mechanisms that regulate these sex-specific expression and splicing patterns remain poorly understood. The mealybug, Planococcus citri, displays extreme sexual dimorphism and exhibits an unusual instance of sex-specific genomic imprinting, Paternal Genome Elimination (PGE), in which the paternal chromosomes in males are highly condensed and eliminated from the sperm. P. citri also has no sex chromosomes and as such both sexual dimorphism and PGE are predicted to be under epigenetic control. We recently showed that P. citri females display a highly unusual DNA methylation profile for an insect species, with the presence of promoter methylation associated with lower levels of gene expression. In this study we therefore decided to explore genome-wide differences in DNA methylation between male and female P. citri using whole genome bisulfite sequencing. We have identified extreme differences in genome-wide levels and patterns between the sexes. Males display overall higher levels of DNA methylation which manifests as more uniform low-levels across the genome. Whereas females display more targeted high levels of methylation. We suggest these unique sex-specific differences are due to chromosomal differences caused by PGE and may be linked to possible ploidy compensation. Using RNA-Seq we identified extensive sex-specific gene expression and alternative splicing. We found cis-acting DNA methylation is not directly associated with differentially expressed or differentially spliced genes, indicating a broader role for chromosome-wide trans-acting DNA methylation in this species.


Author(s):  
Aravind Kumar Konda ◽  
Pallavi Singh ◽  
Khela Ram Soren ◽  
Narendra Pratap Singh

Promoters are cis-acting regulatory elements that are usually present upstream to the coding sequences and determine the gene expression. Deployment of tissue specific and inducible promoters are constantly increasing for development of successful and stable multiple transgenic plants. To this end, as a strategy for enhanced expression of cis or transgenes, promoter engineering of the native msg promoter from soya bean has been carried out for executing pod specific expression of genes. Cis regulatory elements such as 5’UTR and poly (A) tract have been incorporated for imparting mRNA stability and translational enhancement to generate the modified 1.285 Kb pod specific promoter. Further to attain transcriptional enhancement the modified promoter has been cloned to generate Bi-directional Duplex Promoters (BDDP). The engineered msg promoter gene constructs can be deployed for high level tissue specific gene expression of cis/trans genes along with chosen terminator in chickpea. soybean and other legumes as well.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the isolated workers of Reticulitermes labralis developed into reproductives, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results We identified 38,070 differentially expressed genes and found a pattern of gene expression involved in the differentiation of the workers into reproductives. 12, 543 genes were specifically upregulated in the isolated workers. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into reproductives. Ras functions as a signalling switch regulates the reproductive plasticity of workers. The catalase gene which is related to longevity was up-regulated in reproductives. Conclusion We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into reproductives and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.


Author(s):  
Siobhan Cleary ◽  
Cathal Seoighe

Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 4 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2008 ◽  
Vol 34 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Atsushi Hosui ◽  
Lothar Hennighausen

Growth hormone (GH) controls the physiology and pathophysiology of the liver, and its signals are conducted by two members of the family of signal transducers and activators of transcription, STAT5A and STAT5B. Mice in which the Stat5a/b locus has been inactivated specifically in hepatocytes display GH resistance, the sex-specific expression of genes associated with liver metabolism and the cytochrome P-450 system is lost, and they develop hepatosteatosis. Several groups have shown by global gene expression profiling that a cadre of STAT5A/B target genes identify genetic cascades induced by GH and other cytokines. Evidence is accumulating that in the absence of STAT5A/B GH aberrantly activates STAT1 and STAT3 and their downstream target genes and thereby offers a partial explanation of some of the physiological alterations observed in Stat5a/b-null mice and human patients. We hypothesize that phenotypic changes observed in the absence of STAT5A/B are due to two distinct molecular consequences: first, the failure of STAT5A/B target genes to be activated by GH and second, the rerouting of GH signaling to other members of the STAT family. Rerouting of GH signaling to STAT1 and STAT3 might partially compensate for the loss of STAT5A/B, but it certainly activates biological programs distinct from STAT5A/B. Here we discuss the extent to which studies on global gene expression profiling have fostered a better understanding of the biology behind cytokine-STAT5A/B networks in hepatocytes. We also explore whether this wealth of information on gene activity can be used to further understand the roles of cytokines in liver disease.


1994 ◽  
Vol 14 (11) ◽  
pp. 7363-7376 ◽  
Author(s):  
A Cvekl ◽  
C M Sax ◽  
E H Bresnick ◽  
J Piatigorsky

The abundance of crystallins (> 80% of the soluble protein) in the ocular lens provides advantageous markers for selective gene expression during cellular differentiation. Here we show by functional and protein-DNA binding experiments that the chicken alpha A-crystallin gene is regulated by at least five control elements located at sites A (-148 to -139), B (-138 to -132), C (-128 to -101), D (-102 to -93), and E (-56 to -41). Factors interacting with these sites were characterized immunologically and by gel mobility shift experiments. The results are interpreted with the following model. Site A binds USF and is part of a composite element with site B. Site B binds CREB and/or CREM to enhance expression in the lens and binds an AP-1 complex including CREB, Fra2 and/or JunD which interacts with USF on site A to repress expression in fibroblasts. Sites C and E (which is conserved across species) bind Pax-6 in the lens to stimulate alpha A-crystallin promoter activity. These experiments provide the first direct data that Pax-6 contributes to the lens-specific expression of a crystallin gene. Site D (-104 to -93) binds USF and is a negative element. Thus, the data indicate that USF, CREB and/or CREM (or AP-1 factors), and Pax-6 bind a complex array of positive and negative cis-acting elements of the chicken alpha A-crystallin gene to control high expression in the lens and repression in fibroblasts.


2019 ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background: The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the transition of the female workers into neotenic reproductives (NRs) was induced by a groups of isolated workers (IWs) of Reticulitermes labralis, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results: We identified 38,070 differentially expressed genes and found profile 5 to be the pattern of gene expression involved in the differentiation of the workers into reproductives. 12,543 genes were specifically upregulated in the IWs. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into NRs. Ras functions as a signalling switch regulated the reproductive plasticity of workers.The catalase gene which is related to longevity was up-regulated in NRs. Conclusion: We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into queens and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.


2021 ◽  
Author(s):  
Jinding Liu ◽  
Fei Yin ◽  
Kun Lang ◽  
Wencai Jie ◽  
Suxu Tan ◽  
...  

Abstract Background: RNA-seq has become a standard tool in biology and has produced large and diverse transcriptomic datasets for users to explore fungal expression regulation. Fungal alternative splicing, which is attracting increasing attention because of evolutionary adaptations to changing external conditions has not been thoroughly investigated in previous studies, unlike that of animals and plants. However, the analyses of RNA-seq datasets are made difficult by the heterogeneity of study design and complex bioinformatics approaches. Comprehensive analyses of these published datasets should contribute new insights into fungal expression regulation.Results: We have developed a web-based platform called FungiExp hosting fungal gene expression levels and alternative splicing profiles in 35,821 curated RNA-seq experiments from 220 species. It allows users to perform retrieval via diverse terms and sequence similarity. Moreover, users can customize experimental groups to perform differential and specific expression analyses. The wide range of data visualization is an additional important feature that should help users intuitively understand retrieval and analysis results.Conclusions: With its uniform data processing, easy data accessibility, convenient retrieval, and analysis functions, FungiExp is a valuable resource and tool that allows users to (re)use published RNA-seq datasets. It is accessible at http://bioinfo.njau.edu.cn/fungiExp.


Genetics ◽  
1992 ◽  
Vol 131 (1) ◽  
pp. 113-128 ◽  
Author(s):  
M T O'Neil ◽  
J M Belote

Abstract The transformer (tra) gene of Drosophila melanogaster occupies an intermediate position in the regulatory pathway controlling all aspects of somatic sexual differentiation. The female-specific expression of this gene's function is regulated by the Sex lethal (Sxl) gene, through a mechanism involving sex-specific alternative splicing of tra pre-mRNA. The tra gene encodes a protein that is thought to act in conjunction with the transformer-2 (tra-2) gene product to control the sex-specific processing of doublesex (dsx) pre-mRNA. The bifunctional dsx gene carries out opposite functions in the two sexes, repressing female differentiation in males and repressing male differentiation in females. Here we report the results from an evolutionary approach to investigate tra regulation and function, by isolating the tra-homologous genes from selected Drosophila species, and then using the interspecific DNA sequence comparisons to help identify regions of functional significance. The tra-homologous genes from two Sophophoran subgenus species, Drosophila simulans and Drosophila erecta, and two Drosophila subgenus species, Drosophila hydei and Drosophila virilis, were cloned, sequenced and compared to the D. melanogaster tra gene. This comparison reveals an unusually high degree of evolutionary divergence among the tra coding sequences. These studies also highlight a highly conserved sequence within intron one that probably defines a cis-acting regulator of the sex-specific alternative splicing event.


Sign in / Sign up

Export Citation Format

Share Document