scholarly journals Transcriptome changes reveal the genetic mechanisms of the reproductive plasticity of workers in lower termites

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the isolated workers of Reticulitermes labralis developed into reproductives, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results We identified 38,070 differentially expressed genes and found a pattern of gene expression involved in the differentiation of the workers into reproductives. 12, 543 genes were specifically upregulated in the isolated workers. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into reproductives. Ras functions as a signalling switch regulates the reproductive plasticity of workers. The catalase gene which is related to longevity was up-regulated in reproductives. Conclusion We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into reproductives and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.

2019 ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background: The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the transition of the female workers into neotenic reproductives (NRs) was induced by a groups of isolated workers (IWs) of Reticulitermes labralis, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results: We identified 38,070 differentially expressed genes and found profile 5 to be the pattern of gene expression involved in the differentiation of the workers into reproductives. 12,543 genes were specifically upregulated in the IWs. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into NRs. Ras functions as a signalling switch regulated the reproductive plasticity of workers.The catalase gene which is related to longevity was up-regulated in NRs. Conclusion: We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into queens and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.


2019 ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background: The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the transition of the female workers into neotenic reproductives (NRs) was induced by a groups of isolated workers (IWs) of Reticulitermes labralis, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results: We identified 38,070 differentially expressed genes and found profile 5 to be the pattern of gene expression involved in the differentiation of the workers into reproductives. 12,543 genes were specifically upregulated in the IWs. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into NRs. Ras functions as a signalling switch regulated the reproductive plasticity of workers.The catalase gene which is related to longevity was up-regulated in NRs. Conclusion: We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into queens and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.


2019 ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background: The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the isolated workers of Reticulitermes labralis developed into reproductives, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results: We identified 38,070 differentially expressed genes and found a pattern of gene expression involved in the differentiation of the workers into reproductives. 12,543 genes were specifically upregulated in the isolated workers. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into reproductives. Ras functions as a signalling switch regulates the reproductive plasticity of workers.The catalase gene which is related to longevity was up-regulated in reproductives. Conclusion: We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into reproductives and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.


2021 ◽  
Author(s):  
Julia I Wucherpfennig ◽  
Timothy R Howes ◽  
Jessica N Au ◽  
Eric H Au ◽  
Garrett A Roberts Kingman ◽  
...  

Understanding the genetic mechanisms leading to new traits is a fundamental goal of evolutionary biology. We show that HOXDB regulatory changes have been used repeatedly in different stickleback fish species to alter the length and number of bony dorsal spines. In Gasterosteus aculeatus, a variant HOXDB allele is genetically linked to shortening an existing spine and adding a spine. In Apeltes quadracus, a variant allele is associated with lengthening an existing spine and adding a spine. The alleles alter the same conserved non-coding HOXDB enhancer by diverse molecular mechanisms, including SNPs, deletions, and transposable element insertions. The independent cis-acting regulatory changes are linked to anterior expansion or contraction of HOXDB expression. Our findings support the long-standing hypothesis that natural Hox gene variation underlies key morphological patterning changes in wild populations and illustrate how different mutational mechanisms affecting the same region may produce opposite gene expression changes with similar phenotypic outcomes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pernille Barkholt ◽  
Kristoffer T. G. Rigbolt ◽  
Mechthilde Falkenhahn ◽  
Thomas Hübschle ◽  
Uwe Schwahn ◽  
...  

Abstract The central mechanisms underlying the marked beneficial metabolic effects of bariatric surgery are unclear. Here, we characterized global gene expression in the hypothalamic arcuate nucleus (Arc) in diet-induced obese (DIO) rats following Roux-en-Y gastric bypass (RYGB). 60 days post-RYGB, the Arc was isolated by laser-capture microdissection and global gene expression was assessed by RNA sequencing. RYGB lowered body weight and adiposity as compared to sham-operated DIO rats. Discrete transcriptome changes were observed in the Arc following RYGB, including differential expression of genes associated with inflammation and neuropeptide signaling. RYGB reduced gene expression of glial cell markers, including Gfap, Aif1 and Timp1, confirmed by a lower number of GFAP immunopositive astrocyte profiles in the Arc. Sham-operated weight-matched rats demonstrated a similar glial gene expression signature, suggesting that RYGB and dietary restriction have common effects on hypothalamic gliosis. Considering that RYGB surgery also led to increased orexigenic and decreased anorexigenic gene expression, this may signify increased hunger-associated signaling at the level of the Arc. Hence, induction of counterregulatory molecular mechanisms downstream from the Arc may play an important role in RYGB-induced weight loss.


The study of phytochrome signalling has yielded a wealth of data describing both the perception of light by the receptor, and the terminal steps in phytochrome-regulated gene expression by a number of transcription factors. We are now focusing on establishing the intervening steps linking phytochrome photoactivation to gene expression, and the regulation and interactions of these signalling pathways. Recent work has utilized both a pharmacological approach in phototrophic soybean suspension cultures and microinjection techniques in tomato to establish three distinct phytochrome signal-transduction pathways: (i) a calcium-dependent pathway that regulates the expression of genes encoding the chlorophyll a/b binding protein ( CAB ) and other components of photosystem II; (ii) a cGMP-dependent pathway that regulates the expression of the gene encoding chalcone synthase ( CHS ) and the production of anthocyanin pigments; and (iii) a pathway dependent upon both calcium and cGMP that regulates the expression of genes encoding components of photosystem I and is necessary for the production of mature chloroplasts. To study the components and the regulation of phytochrome signal-transduction pathways, mutants with altered photomorphogenic responses have been isolated by a number of laboratories. However, with several possible exceptions, little real progress has been made towards the isolation of mutants in positive regulatory elements of the phytochrome signal-transduction pathway. We have characterized a novel phytochrome A (phyA)-mediated far-red light (FR) response in Arabidopsis seedlings which we are currently using to screen for specific phyA signal-transduction mutants.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 549-549 ◽  
Author(s):  
Claudia Schoch ◽  
Alexander Kohlmann ◽  
Wolfgang Kern ◽  
Sylvia Merk ◽  
Wolfgang Hiddemann ◽  
...  

Abstract Deletions of the long arm of chromosome 5 occur either as the sole karyotype abnormality in MDS and AML or as part of a complex aberrant karyotype. It was the aim of this study to analyze the impact of the 5q deletion on the expression levels of genes located on chromosome 5q in AML and MDS. Therefore, gene expression analysis was performed in 344 AML and MDS cases using Affymetrix U133A+B oligonucleotide microarrays. The following subgroups were analyzed: AML with sole 5q deletion (n=7), AML with complex aberrant karyotype (n=83), MDS with sole 5q deletion (n=9), and MDS with complex aberrant karyotype (n=9). These were compared to 200 AML and 36 MDS with normal karyotype. In total, 1313 probe sets representing 603 genes cover sequences located on the long arm of chromosome 5. Overall a significant lower mean expression of all genes located on the long arm of chromosome 5 was observed in subgroups with 5q deletion in comparison to their respective control groups (for all comparisons, p<0.05). 36 genes showed a significantly lower expression in all comparisons. These genes are involved in a variety of different biological processes such as signal transduction (CSNK1A1, DAMS), cell cycle regulation (HDAC3, PFDN1) and regulation of transcription (CNOT8). In addition we performed class prediction using support vector machines (SVM). In one approach all 6 different subgroups were analyzed as one class each. While AML and MDS with normal karyotype as well as AML with complex aberrant karyotype were correctly predicted with high accuracies (97%, 81%, and 92%, respectively) AML and MDS with 5q- sole and MDS with complex aberrant karyotype were frequently misclassified as AML with complex aberrant karyotype. In a second approach only two classes were defined: all cases with 5q deletion combined vs. all cases without 5q deletion. 102 out of 108 cases (94%) with 5q deletion were identified correctly supporting the fact that a distinct gene expression pattern is associated with 5q deletion in general. Performing SVM only with genes located on the long arm of chromosome 5 also resulted in a correct prediction of 92 of 108 (85%) stressing the importance of the expression of genes located on chromosome 5 for these AML and MDS subtypes. The top 100 differentially expressed probe sets between cases with and without 5q deletion represented 74 different annotated genes of which 23 are located on the long arm of chromosome 5. They are involved in a variety of different biological functions such as DNA repair (POLE, RAD21, RAD23B), regulation of transcription (ZNF75A, AF020591, MLLT3, HOXB6), protein biosynthesis (UPF2, TINP1, RPL12, RPL14, RPL15) cell cycle control (GMNN, CSPG6, PFDN1) and signal transduction (HINT1, STK24, APP, CAMLG). 10 of the top 74 genes associated with 5q deletion were involved in the CMYC-pathway with upregulation of RAD21, RAD23B, GMMN, CSPG6, APP, POLE STK24 and STAG2, and downregulation of ACTA2, and RPL12. Ten other genes out of the 74 top differentially expressed genes were involved in the TP53 pathway with upregulation of H1F0, PTPN11 and TAF2 and downregulation of DF, UBE2D2, EEF1A1, IGBP1, PPP2CA, EIF2S3, and NACA. In conclusion, loss of parts of the long arm of chromosome 5 leads to a lower expression of genes located on the long arm of chromosome 5. A specific pattern of functionally related genes was identified which shows a lower expression in AML and MDS subtypes with 5q deletion.


2008 ◽  
Vol 34 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Atsushi Hosui ◽  
Lothar Hennighausen

Growth hormone (GH) controls the physiology and pathophysiology of the liver, and its signals are conducted by two members of the family of signal transducers and activators of transcription, STAT5A and STAT5B. Mice in which the Stat5a/b locus has been inactivated specifically in hepatocytes display GH resistance, the sex-specific expression of genes associated with liver metabolism and the cytochrome P-450 system is lost, and they develop hepatosteatosis. Several groups have shown by global gene expression profiling that a cadre of STAT5A/B target genes identify genetic cascades induced by GH and other cytokines. Evidence is accumulating that in the absence of STAT5A/B GH aberrantly activates STAT1 and STAT3 and their downstream target genes and thereby offers a partial explanation of some of the physiological alterations observed in Stat5a/b-null mice and human patients. We hypothesize that phenotypic changes observed in the absence of STAT5A/B are due to two distinct molecular consequences: first, the failure of STAT5A/B target genes to be activated by GH and second, the rerouting of GH signaling to other members of the STAT family. Rerouting of GH signaling to STAT1 and STAT3 might partially compensate for the loss of STAT5A/B, but it certainly activates biological programs distinct from STAT5A/B. Here we discuss the extent to which studies on global gene expression profiling have fostered a better understanding of the biology behind cytokine-STAT5A/B networks in hepatocytes. We also explore whether this wealth of information on gene activity can be used to further understand the roles of cytokines in liver disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Soumen Bhattacharjee

Reactive oxygen species (ROS) are astonishingly versatile molecular species and radicals that are poised at the core of a sophisticated network of signaling pathways of plants and act as core regulator of cell physiology and cellular responses to environment. ROS are continuously generated in plants as an inevitable consequence of redox cascades of aerobic metabolism. In one hand, plants are surfeited with the mechanism to combat reactive oxygen species, in other circumstances, plants appear to purposefully generate (oxidative burst) and exploit ROS or ROS-induced secondary breakdown products for the regulation of almost every aspect of plant biology, from perception of environmental cues to gene expression. The molecular language associated with ROS-mediated signal transduction, leading to modulation in gene expression to be one of the specific early stress response in the acclamatory performance of the plant. They may even act as “second messenger” modulating the activities of specific proteins or expression of genes by changing redox balance of the cell. The network of redox signals orchestrates metabolism for regulating energy production to utilization, interfering with primary signaling agents (hormones) to respond to changing environmental cues at every stage of plant development. The oxidative lipid peroxidation products and the resulting generated products thereof (associated with stress and senescence) also represent “biological signals,” which do not require preceding activation of genes. Unlike ROS-induced expression of genes, these lipid peroxidation products produce nonspecific response to a large variety of environmental stresses. The present review explores the specific and nonspecific signaling language of reactive oxygen species in plant acclamatory defense processes, controlled cell death, and development. Special emphasis is given to ROS and redox-regulated gene expression and the role of redox-sensitive proteins in signal transduction event. It also describes the emerging complexity of apparently contradictory roles that ROS play in cellular physiology to ascertain their position in the life of the plant.


2001 ◽  
Vol 276 (50) ◽  
pp. 47136-47142 ◽  
Author(s):  
Theresa D. Joseph ◽  
Dwight C. Look

Adenoviral evolution has generated strategies to resist host cell antiviral systems, but molecular mechanisms for evasion of interferon (IFN) effects by adenoviruses during late-phase infection are poorly defined. In this study, we examined adenovirus type 5 (AdV) effects on IFN-γ-dependent gene expression and Janus family kinase-signal transducer and activator of transcription signaling components in human tracheobronchial epithelial cells. We found that AdV infection specifically inhibited IFN-γ-dependent gene expression in airway epithelial cells without evidence of epithelial cell injury or generation of a soluble extracellular inhibitor. Furthermore, infection with AdV for 18–24 h blocked phosphorylation/activation of the Stat1 transcription factor that regulates IFN-γ-dependent genes. Although AdV also inhibited IFN-α-dependent phosphorylation of Stat1 and Stat2, interleukin-4-dependent phosphorylation of the related transcription factor Stat6 was not affected, indicating that the virus selectively affected specific signaling pathways. Our results indicate that AdV inhibition of the IFN-γ signal transduction cascade occurs through loss of ligand-induced receptor complex assembly and consequent component phosphorylation and suggest that lack of complex assembly is due to decreased expression of the IFN-γR2 chain of the IFN-γ receptor. IFN-γR2 is required at an early step in Janus family kinase-signal transducer and activator of transcription pathway activation and is expressed at low levels in airway epithelial cells, supporting the concept that adenoviral down-regulation of the level of this IFN-γ receptor component allows for persistent modulation of IFN-γ-dependent gene expression.


Sign in / Sign up

Export Citation Format

Share Document