scholarly journals Exercise and the brain: a mechanical model for pulsation on flow of cerebrospinal fluid

2022 ◽  
Author(s):  
Michael George Hale ◽  
Jonathan Ainsley Coles

Exchange of molecules between cerebrospinal fluid (CSF) and brain cells contributes to brain function and protection from dementia, but the route by which CSF is brought close enough to the neural tissue to be exchanged by extracellular diffusion is not clear. Exogenous molecules injected into CSF are carried along channels outside arteries and reach the basement lamina that surrounds the dense capillary network. Transport of solutes by diffusion along the basement lamina, a gel of macromolcules about 100 nm thick, would be too slow; bulk flow in a static geometry would require unphysiologically high pressures. However, it is known that the pulsation of blood aids transport of CSF, and we hypothesized that this is because the pulsation intermittently squeezes the pericapillary lamina. In a primitive mimicry, we have tested whether intermittent squeezing increases flow through an agar gel. In all but one of 216 tests, pulsation caused a reversible increase, sometimes by a factor of 100 or more. The enhancement was greatest for frequencies 5-11 Hz and, over the tested range of pressure heads (20 - 50 cmH2O), was greatest for the lowest pressure. The results suggest one reason why exercise slows the aging of the brain.

Author(s):  
Eduardo E. Benarroch ◽  
Jeremy K. Cutsforth-Gregory ◽  
Kelly D. Flemming

The meninges, ventricular system, subarachnoid space, and cerebrospinal fluid (CSF) constitute a functionally unique system that has an important role in maintaining a stable environment within which the central nervous system can function. The membranes that constitute the meninges serve as supportive and protective structures for neural tissue. The CSF itself provides a cushioning effect during rapid movement of the head and mechanical buoyancy to the brain. In addition to providing a pathway for the removal of brain metabolites, it functions as a chemical reservoir that protects the local environment of the brain from changes that may occur in the blood, thus ensuring the brain’s continued undisturbed performance. The CSF system is present at the supratentorial, posterior fossa, and spinal levels. Because of this extensive anatomical distribution and function, pathologic alterations of the CSF system can occur in many neurologic disorders.


Science ◽  
2019 ◽  
Vol 366 (6465) ◽  
pp. 628-631 ◽  
Author(s):  
Nina E. Fultz ◽  
Giorgio Bonmassar ◽  
Kawin Setsompop ◽  
Robert A. Stickgold ◽  
Bruce R. Rosen ◽  
...  

Sleep is essential for both cognition and maintenance of healthy brain function. Slow waves in neural activity contribute to memory consolidation, whereas cerebrospinal fluid (CSF) clears metabolic waste products from the brain. Whether these two processes are related is not known. We used accelerated neuroimaging to measure physiological and neural dynamics in the human brain. We discovered a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non–rapid eye movement sleep. Neural slow waves are followed by hemodynamic oscillations, which in turn are coupled to CSF flow. These results demonstrate that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and these CSF dynamics are interlinked with neural and hemodynamic rhythms.


1987 ◽  
Vol 7 (6) ◽  
pp. 663-672 ◽  
Author(s):  
Paul M. Gross ◽  
Adolf Weindl ◽  
Karl M. Knigge

These seven specialized circumventricular structures of the mammalian brain represent windows with individualized structural characteristics permitting intimate contact between blood and cerebrospinal fluid, neurones and specialized ependyma-glia. These “Seven Windows of the Brain”, like the seven lucky deities of Japan, may each have a specific patron of body -brain function which they serve.1


Author(s):  
Joel A. Lefever ◽  
José Jaime García ◽  
Joshua H. Smith

In a healthy brain, a continuous flow of cerebrospinal fluid (CSF) is produced in the choroid plexus, located in the lateral ventricles. Most of the CSF drains via the Sylvius aqueduct into the subarachnoid space around the brain, but a small amount flows directly through the cerebrum into the subarachnoid space inside the skull. Non-communicating hydrocephalus occurs when an obstruction blocks the Sylvius aqueduct. Because the cerebrum has only limited capacity for CSF to flow through it, CSF accumulates in the ventricles, yielding a significant increase in ventricular volume and deformation of the cerebrum, which may lead to tissue damage.


1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


1990 ◽  
Vol 122 (2) ◽  
pp. 191-200 ◽  
Author(s):  
C. G. J. Sweep ◽  
Margreet D. Boomkamp ◽  
István Barna ◽  
A. Willeke Logtenberg ◽  
Victor M. Wiegant

Abstract The effect of intracerebroventricular (lateral ventricle) administration of arginine8-vasopressin (AVP) on the concentration of β-endorphin immunoreactivity in the cerebrospinal fluid obtained from the cisterna magna was studied in rats. A decrease was observed 5 min following injection of 0.9 fmol AVP. No statistically significant changes were found 5 min after intracerebroventricular treatment of rats with 0.09 or 9 fmol. The decrease induced by 0.9 fmol AVP was of short duration and was found 5 min after treatment but not 10 and 20 min. Desglycinamide9-AVP (0.97 fmol), [pGlu4, Cyt6]-AVP-(4–9) (1.44 fmol), Nα-acetyl-AVP (0.88 fmol), lysine8-vasopressin (0.94 fmol) and oxytocin (1 fmol) when intracerebroventricularly injected did not affect the levels of β-endorphin immunoreactivity in the cerebrospinal fluid 5 min later. This suggests that the intact AVP-(1–9) molecule is required for this effect. Intracerebroventricular pretreatment of rats with the vasopressin V1-receptor antagonist d(CH2)5Tyr(Me)AVP (8.63 fmol) completely blocked the effect of AVP (0.9 fmol). In order to investigate further the underlying mechanism, the effect of AVP on the disappearance from the cerebrospinal fluid of exogenously applied β-endorphin was determined. Following intracerebroventricular injection of 1.46 pmol camel β-endorphin-(1–31), the β-endorphin immunoreactivity levels in the cisternal cerebrospinal fluid increased rapidly, and reached peak values at 10 min. The disappearance of β-endorphin immunoreactivity from the cerebrospinal fluid then followed a biphasic pattern with calculated half-lifes of 28 and 131 min for the initial and the terminal phase, respectively. Treatment of rats with AVP (0.9 fmol; icv) during either phase (10, 30, 55 min following intracerebroventricular administration of 1.46 pmol β-endorphin-(1–31)) significantly enhanced the disappearance of β-endorphin immunoreactivity from the cerebrospinal fluid. The data suggest that vasopressin plays a role in the regulation of β-endorphin levels in the cerebrospinal fluid by modulating clearance mechanisms via V1-receptors in the brain.


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


2020 ◽  
Vol 15 (4) ◽  
pp. 287-299
Author(s):  
Jie Zhang ◽  
Junhong Feng ◽  
Fang-Xiang Wu

Background: : The brain networks can provide us an effective way to analyze brain function and brain disease detection. In brain networks, there exist some import neural unit modules, which contain meaningful biological insights. Objective:: Therefore, we need to find the optimal neural unit modules effectively and efficiently. Method:: In this study, we propose a novel algorithm to find community modules of brain networks by combining Neighbor Index and Discrete Particle Swarm Optimization (DPSO) with dynamic crossover, abbreviated as NIDPSO. The differences between this study and the existing ones lie in that NIDPSO is proposed first to find community modules of brain networks, and dose not need to predefine and preestimate the number of communities in advance. Results: : We generate a neighbor index table to alleviate and eliminate ineffective searches and design a novel coding by which we can determine the community without computing the distances amongst vertices in brain networks. Furthermore, dynamic crossover and mutation operators are designed to modify NIDPSO so as to alleviate the drawback of premature convergence in DPSO. Conclusion: The numerical results performing on several resting-state functional MRI brain networks demonstrate that NIDPSO outperforms or is comparable with other competing methods in terms of modularity, coverage and conductance metrics.


We have new answers to how the brain works and tools which can now monitor and manipulate brain function. Rapid advances in neuroscience raise critical questions with which society must grapple. What new balances must be struck between diagnosis and prediction, and invasive and noninvasive interventions? Are new criteria needed for the clinical definition of death in cases where individuals are eligible for organ donation? How will new mobile and wearable technologies affect the future of growing children and aging adults? To what extent is society responsible for protecting populations at risk from environmental neurotoxins? As data from emerging technologies converge and are made available on public databases, what frameworks and policies will maximize benefits while ensuring privacy of health information? And how can people and communities with different values and perspectives be maximally engaged in these important questions? Neuroethics: Anticipating the Future is written by scholars from diverse disciplines—neurology and neuroscience, ethics and law, public health, sociology, and philosophy. With its forward-looking insights and considerations for the future, the book examines the most pressing current ethical issues.


Sign in / Sign up

Export Citation Format

Share Document