scholarly journals Engineered collagen-targeting therapeutics reverse lung and kidney fibrosis in mice

2022 ◽  
Author(s):  
MICHAEL John Victor WHITE ◽  
Michal Raczy ◽  
Erica Budina ◽  
Ani Solanki ◽  
Zheng Jenny Zhang ◽  
...  

Fibrotic diseases are involved in 45% of deaths in the United States. In particular, fibrosis of the kidney and lung are major public health concerns due to their high prevalence and lack of existing treatment options. Here, we harness the pathophysiological features of fibrotic diseases, namely leaky vasculature and aberrant extracellular matrix (ECM) protein deposition (i.e. collagen), to target an anti-fibrotic biologic and a small molecule drug to disease sites of fibrosis, thus improving their therapeutic potential in mouse models of lung and kidney fibrosis. First, we identify and validate collagen-targeting drug delivery systems that preferentially accumulate in the diseased organs: von Willebrand Factor's A3 domain (VWF-A3) and decorin-derived collagen-binding peptide-conjugated micelles (CBP-micelles). We then engineer and recombinantly express novel candidate biologic therapies based on the anti-inflammatory cytokine IL-10: A3-IL-10 and A3-Serum Albumin-IL-10 (A3-SA-IL-10). Simultaneously, we stably encapsulate the potential anti-fibrotic water-insoluble drug, rapamycin, in CBP-micelles. We show that these novel formulations of therapeutics bind to collagen in vitro and that their efficacy in mouse models of lung and kidney fibrosis is improved, compared to free, untargeted drugs. Our results demonstrate that collagen-targeted anti-fibrotic drugs may be next generation therapies of high clinical potential.

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2018 ◽  
Author(s):  
G. Savary ◽  
M. Buscot ◽  
E. Dewaeles ◽  
S. Diazzi ◽  
N. Nottet ◽  
...  

AbstractGiven the paucity of effective treatments for fibrotic disorders, new insights into the deleterious mechanisms controlling fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. Here, we identified the long non-coding RNA DNM3OS as a critical downstream effector of TGF-β-induced myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to 3 distinct profibrotic mature miRNAs (i.e. miR-199a-5p/3p and miR-214-3p), which influence both SMAD and non-SMAD components of TGF-β signaling in a multifaceted way, through two modes of action consisting of either signal amplification or mediation. Finally, we provide preclinical evidence that interfering with DNM3OS function using distinct strategies not only prevents lung and kidney fibrosis but also improves established lung fibrosis, providing thus a novel paradigm for the treatment of refractory fibrotic diseases such as idiopathic pulmonary fibrosis.One Sentence SummaryThe DNM3OS lncRNA is a reservoir of fibromiRs with major functions in fibroblast response to TGF-β and represents a valuable therapeutic target for refractory fibrotic diseases such as idiopathic pulmonary fibrosis (IPF).


2015 ◽  
Vol 2015 ◽  
pp. 1-3 ◽  
Author(s):  
Gregory Kim ◽  
Saninuj N. Malayaman ◽  
Michael Stuart Green

Cholelithiasis is a prevalent problem in the United States with 14% or more adults affected. Definitive treatment of cholelithiasis is cholecystectomy. When cholecystectomy yields minimal resolution treatment options include expectant management of asymptomatic gallstones or endoscopic retrograde cholangiopancreatogram. We present a case of intrahepatic biliary casts where surgical option was not possible, interventional radiology was unsuccessful, and methyl tert-butyl ether was used to dissolve the biliary obstruction. Dissolution therapy of gallstones was first reported in 1722 when Vollisnieri used turpentine in vitro. While diethyl ether has excellent solubilizing capacity, its low boiling point limited its use surgically as it vaporizes immediately. Diethyl ether can expand 120-fold during warming to body temperature after injection into the biliary system making it impractical for routine use. The use of dissolution is out of favor due to the success of laparoscopic cholecystectomy. Epidemiological studies have shown the general population should have minimal concerns from passive exposure. Dissolution using MTBE remains a viable option if surgical or endoscopic options are not available. However, because of risks involved to both the patient and the staff, careful multidisciplinary team approach must be undertaken to minimize the risks and provide the best possible care to the patient.


2020 ◽  
Vol 117 (9) ◽  
pp. 5028-5038 ◽  
Author(s):  
Evelien Houben ◽  
Kris Janssens ◽  
Doryssa Hermans ◽  
Jennifer Vandooren ◽  
Chris Van den Haute ◽  
...  

The brain’s endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS). We identified two promising therapeutic candidates which enhance remyelination: oncostatin M (OSM), a member of the interleukin-6 family, and downstream mediator tissue inhibitor of metalloproteinases-1 (TIMP-1). While remyelination was completely abrogated in OSMRβ knockout (KO) mice, OSM overexpression in the chronically demyelinated CNS established remyelination. Astrocytic TIMP-1 was demonstrated to play a pivotal role in OSM-mediated remyelination. Astrocyte-derived TIMP-1 drove differentiation of oligodendrocyte precursor cells into mature oligodendrocytes in vitro. In vivo, TIMP-1 deficiency completely abolished spontaneous remyelination, phenocopying OSMRβ KO mice. Finally, TIMP-1 was expressed by human astrocytes in demyelinated multiple sclerosis lesions, confirming the human value of our findings. Taken together, OSM and its downstream mediator TIMP-1 have the therapeutic potential to boost remyelination in demyelinating disorders.


2015 ◽  
Vol 8s1 ◽  
pp. CGM.S21221 ◽  
Author(s):  
Alexander S. Bobbs ◽  
Jennifer M. Cole ◽  
Karen D. Cowden Dahl

Ovarian cancer (OC) is the leading cause of death from a gynecological malignancy in the United States. By the time a woman is diagnosed with OC, the tumor has usually metastasized. Mouse models that are used to recapitulate different aspects of human OC have been evolving for nearly 40 years. Xenograft studies in immunocompromised and immunocompetent mice have enhanced our knowledge of metastasis and immune cell involvement in cancer. Patient-derived xenografts (PDXs) can accurately reflect metastasis, response to therapy, and diverse genetics found in patients. Additionally, multiple genetically engineered mouse models have increased our understanding of possible tissues of origin for OC and what role individual mutations play in establishing ovarian tumors. Many of these models are used to test novel therapeutics. As no single model perfectly copies the human disease, we can use a variety of OC animal models in hypothesis testing that will lead to novel treatment options. The goal of this review is to provide an overview of the utility of different mouse models in the study of OC and their suitability for cancer research.


2021 ◽  
Author(s):  
◽  
Anasuya Vishvanath

<p>Haemangioma is a primary tumour of the microvasculature characterised by active angiogenesis and endothelial cell (EC)  proliferation followed by slow regression or involution whereby the newly formed blood vessels are gradually replaced by fibrofatty tissue. These developmental changes have been arbitrarily divided into the proliferative, involuting and involuted phases. The cellular and molecular events that initiate and regulate the proliferation and spontaneous involution of haemangioma remain poorly understood. This study examined the expression of a number of genes known to be associated with angiogenesis. These include members of the signal transducers and activators of transcription (STAT) protein family of transcription factors, STAT-3 and STAT-1, and the endothelial receptor tyrosine kinases, VEGFR-1 and VEGFR-2. While STAT-3, STAT-1 and VEGFR-1 expression was detected in all phases of haemangioma, VEGFR-2 expression was found to be abundant only during the proliferative phase and decreased with ongoing involution. In this study the cellular structures that form capillary-like outgrowths in an in vitro haemangioma explant model were characterised as haemangioma-derived mesenchymal stem cells (HaemDMSCs) while the cells obtained directly from dissociated proliferative haemangioma tissue were defined as haemangioma-derived endothelial progenitor cells (HaemDEPCs). This investigation showed that although the vascular endothelial growth factor (VEGF), a key growth factor for ECs, was able to maintain HaemDEPCs morphology and immunophenotype for a limited period, these cells eventually differentiated into HaemDMSCs, which subsequently differentiated into adipocytes. Furthermore, while VEGF induced significant capillary-like sprouting from tissue explants, both capillary-like sprouting and HaemDMSCs proliferation was inhibited by the addition of AG490, a Janus kinase (JAK) inhibitor which has also been shown to inhibit the STAT protein pathway. These findings indicate that the development and differentiation of a progenitor cell and a stem cell population underlies the aethiopathogenesis of haemangioma and that VEGF and STAT signalling is involved in the programmed life-cycle of haemangioma. The in vitro explant model for haemangioma offers an opportunity to study and identify novel treatment options for haemangioma. Interferon-alpha (IFN ) has been used to treat steroid-resistant haemangioma but is associated with serious side-affects. The tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been shown to specifically induce apoptosis of cancer cells while sparing normal cells. As IFN has previously been shown to sensitise cells to TRAIL-induced apoptosis, this study examined the efficacy of low dose IFN in combination with TRAIL in the in vitro explant model and also in the purified HaemDMSCs. Results showed that combining IFN with TRAIL led to synergistic inhibition of capillary-like outgrowth. These results indicate that IFN in combination with TRAIL serves as a potential treatment option for haemangioma. In contrast, HaemDMSCs were protected from TRAIL-induced killing. These cells were found to express high levels of the decoy receptors, osteoprotegerin (OPG) and decoy receptor 2 (DcR2). Increased OPG expression was also detected in the extracellular matrix and in the conditioned medium of HaemDMSCs. From these findings, we postulate that the increased level of extracellular OPG by HaemDMSCs is a stress response induced by their in vitro expansion and that secreted OPG functions as a protective shield preventing TRAIL action. The empirical and unsatisfactory nature of the current therapies for haemangioma underscores the importance of a scientific approach to this common tumour. A better understanding of the molecular mechanisms that govern haemangioma is of both clinical and biological interest as it may provide vital information with therapeutic potential for haemangioma and also for other angiogenesis-dependent conditions.</p>


Blood ◽  
2021 ◽  
Author(s):  
Aaron Tobian ◽  
Claudia S Cohn ◽  
Beth Shaz

As the coronavirus disease (COVID-19) pandemic led to a global health crisis, there were limited treatment options and no prophylactic therapies for those exposed to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Convalescent plasma is quick to implement, potentially provides benefits, and has a good safety profile. The therapeutic potential of COVID-19 convalescent plasma (CCP) is likely mediated by antibodies through direct viral neutralization and Fc-dependent functions such as a phagocytosis, complement activation, and antibody-dependent cellular cytotoxicity. In the United States, CCP became one of the most common treatments with over half million units transfused despite limited efficacy data. More than a dozen randomized trials now demonstrate that CCP does not provide benefit for those with moderate to severe disease. However, similar to other passive antibody therapies, CCP is beneficial for early disease, when provided to elderly outpatients within 72 hours after symptom onset. Only high-titer CCP should be transfused. CCP should also be considered for immunosuppressed COVID-19 patients. CCP collected in proximity, by time and location, to the patient may be more beneficial due to SARS-CoV-2 variants. Additional randomized trial data are still accruing and should be incorporated with other trial data to optimize CCP indications.


2020 ◽  
Author(s):  
Ji Zhang ◽  
Tao Wang ◽  
Ashmita Saigal ◽  
Josephine Johnson ◽  
Jennifer Morrisson ◽  
...  

AbstractLung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of all αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab’s yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFβ activation. In IPF patient lung fibroblasts, TGFβ treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated superior in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFβ action though mechanisms beyond the inhibition of latent TGFβ activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.One Sentence Summarytargeting integrin in lung fibrosis


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shashi Kant ◽  
Siobhan M. Craige ◽  
Kai Chen ◽  
Michaella M. Reif ◽  
Heather Learnard ◽  
...  

Abstract Diseases related to impaired blood flow such as peripheral artery disease (PAD) impact nearly 10 million people in the United States alone, yet patients with clinical manifestations of PAD (e.g., claudication and limb ischemia) have limited treatment options. In ischemic tissues, stress kinases such as c-Jun N-terminal kinases (JNKs), are activated. Here, we show that inhibition of the JNK3 (Mapk10) in the neural compartment strikingly potentiates blood flow recovery from mouse hindlimb ischemia. JNK3 deficiency leads to upregulation of growth factors such as Vegfa, Pdgfb, Pgf, Hbegf and Tgfb3 in ischemic muscle by activation of the transcription factors Egr1/Creb1. JNK3 acts through Forkhead box O3 (Foxo3a) to suppress the activity of Egr1/Creb1 transcription regulators in vitro. In JNK3-deficient cells, Foxo3a is suppressed which leads to Egr1/Creb1 activation and upregulation of downstream growth factors. Collectively, these data suggest that the JNK3-Foxo3a-Egr1/Creb1 axis coordinates the vascular remodeling response in peripheral ischemia.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Pietrobono ◽  
Giulia Anichini ◽  
Cesare Sala ◽  
Fabrizio Manetti ◽  
Luciana L. Almada ◽  
...  

AbstractUnderstanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.


Sign in / Sign up

Export Citation Format

Share Document