scholarly journals Oncostatin M-induced astrocytic tissue inhibitor of metalloproteinases-1 drives remyelination

2020 ◽  
Vol 117 (9) ◽  
pp. 5028-5038 ◽  
Author(s):  
Evelien Houben ◽  
Kris Janssens ◽  
Doryssa Hermans ◽  
Jennifer Vandooren ◽  
Chris Van den Haute ◽  
...  

The brain’s endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS). We identified two promising therapeutic candidates which enhance remyelination: oncostatin M (OSM), a member of the interleukin-6 family, and downstream mediator tissue inhibitor of metalloproteinases-1 (TIMP-1). While remyelination was completely abrogated in OSMRβ knockout (KO) mice, OSM overexpression in the chronically demyelinated CNS established remyelination. Astrocytic TIMP-1 was demonstrated to play a pivotal role in OSM-mediated remyelination. Astrocyte-derived TIMP-1 drove differentiation of oligodendrocyte precursor cells into mature oligodendrocytes in vitro. In vivo, TIMP-1 deficiency completely abolished spontaneous remyelination, phenocopying OSMRβ KO mice. Finally, TIMP-1 was expressed by human astrocytes in demyelinated multiple sclerosis lesions, confirming the human value of our findings. Taken together, OSM and its downstream mediator TIMP-1 have the therapeutic potential to boost remyelination in demyelinating disorders.

2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Pietrobono ◽  
Giulia Anichini ◽  
Cesare Sala ◽  
Fabrizio Manetti ◽  
Luciana L. Almada ◽  
...  

AbstractUnderstanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.


2007 ◽  
Vol 114 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Michael R. Loebinger ◽  
Susana Aguilar ◽  
Sam M. Janes

There has been increasing excitement over the last few years with the suggestion that exogenous stem cells may offer new treatment options for a wide range of diseases. Within respiratory medicine, these cells have been shown to have the ability to differentiate and function as both airway and lung parenchyma epithelial cells in both in vitro and increasingly in vivo experiments. The hypothesis is that these cells may actively seek out damaged tissue to assist in the local repair, and the hope is that their use will open up new cellular and genetic treatment modalities. Such is the promise of these cells that they are being rushed from the benchside to the bedside with the commencement of early clinical trials. However, important questions over their use remain and the field is presently littered with controversy and uncertainty. This review evaluates the progress made and the pitfalls encountered to date, and critically assesses the evidence for the use of stem cells in lung disease.


2020 ◽  
Vol 21 (9) ◽  
pp. 3163 ◽  
Author(s):  
Abdel Mouman Ghoumari ◽  
Charly Abi Ghanem ◽  
Narimène Asbelaoui ◽  
Michael Schumacher ◽  
Rashad Hussain

Progesterone and testosterone, beyond their roles as sex hormones, are neuroactive steroids, playing crucial regulatory functions within the nervous system. Among these, neuroprotection and myelin regeneration are important ones. The present review aims to discuss the stimulatory effects of progesterone and testosterone on the process of myelination and remyelination. These effects have been demonstrated in vitro (i.e., organotypic cultures) and in vivo (cuprizone- or lysolecithin-induced demyelination and experimental autoimmune encephalomyelitis (EAE)). Both steroids stimulate myelin formation and regeneration by acting through their respective intracellular receptors: progesterone receptors (PR) and androgen receptors (AR). Activation of these receptors results in multiple events involving direct transcription and translation, regulating general homeostasis, cell proliferation, differentiation, growth and myelination. It also ameliorates immune response as seen in the EAE model, resulting in a significant decrease in inflammation leading to a fast recovery. Although natural progesterone and testosterone have a therapeutic potential, their synthetic derivatives—the 19-norprogesterone (nestorone) and 7α-methyl-nortestosterone (MENT), already used as hormonal contraception or in postmenopausal hormone replacement therapies, may offer enhanced benefits for myelin repair. We summarize here a recent advancement in the field of myelin biology, to treat demyelinating disorders using the natural as well as synthetic analogs of progesterone and testosterone.


2007 ◽  
Vol 106 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Carlo A. Volta ◽  
Valentina Alvisi ◽  
Matilde Campi ◽  
Elisabetta Marangoni ◽  
Raffaele Alvisi ◽  
...  

Background Excessive production of matrix metalloproteinase 9 (MMP-9) is linked to tissue damage and anastomotic leakage after large bowel surgery. Hence, the aim of this study was to verify whether different strategies of fluids administration can reduce MMP-9 expression. Methods In the in vitro experiment, the authors tested the hypothesis of a direct inhibition of MMP-9 by the fluids used perioperatively, i.e., lactated Ringer's solution, 3.4% poligeline, and hydroxyethyl starch 130/0.4. In the in vivo experiment, 36 patients undergoing surgery for colon cancer were randomly assigned to three groups to receive lactated Ringer's solution, poligeline, or hydroxyethyl starch. MMP-9 and tissue inhibitor of metalloproteinases were measured from venous blood samples; the MMP-9/tissue inhibitor of metalloproteinases ratio was calculated as an index of equilibrium between the action of MMP-9 and its inhibition. Results In the in vitro experiment, the presence of hydroxyethyl starch 130/0.4 in the MMP-9 assay system showed a strong inhibition of the enzymatic activity compared with lactated Ringer's solution. In the in vivo experiment, MMP-9 and tissue inhibitor of metalloproteinases plasma levels did not differ among the three groups at baseline, whereas those levels increased significantly at the end of surgery. At that time, the MMP-9 plasma levels and the MMP-9/tissue inhibitor of metalloproteinases ratio were significantly higher in the lactated Ringer's solution and poligeline groups than in the hydroxyethyl starch group. These results were confirmed 72 h after surgery. Conclusions This study demonstrates that hydroxyethyl starch 130/04 decreases the circulating levels of MMP-9 in patients undergoing abdominal surgery.


Author(s):  
Asim Pervaiz ◽  
Michael Zepp ◽  
Rania Georges ◽  
Frank Bergmann ◽  
Saqib Mahmood ◽  
...  

Abstract Purpose Liver metastasis is observed in up to 50% of colorectal cancer (CRC) patients. Available treatment options are limited and disease recurrence is often. Chemokine receptor 5 (CCR5) has attracted attention as novel therapeutic target for treating cancers. In this study, we reinforced the importance of CCR5 as therapeutic target in CRC and its liver metastasis by applying in vitro, in vivo and clinical investigations. Methods By targeting CCR5 via siRNAs or an FDA approved antagonist (maraviroc), we investigated the ensuing antineoplastic effects in three CRC cell lines. An animal model for CRC liver metastasis was used to evaluate time-dependent expressional modulation of the CCR5 axis by cDNA microarray. The model was also used to evaluate the in vivo efficacy of targeting CCR5 by maraviroc. Circulatory and tumor associated levels of CCR5 and its cognate ligands (CCL3, CCL4, CCL5) were analyzed by ELISA, qRT-PCR and immunohistochemistry. Results Targeting the CCR5 inhibited proliferative, migratory and clonogenic properties and interfered with cell cycle-related signaling cascades. In vivo findings showed significant induction of the CCR5 axis during the early liver colonization phase. Treatment with maraviroc significantly inhibited CRC liver metastasis in the animal model. Differential expression profiles of circulatory and tumor associated CCR5/ligands were observed in CRC patients and healthy controls. Conclusion The findings indicate that targeting the CCR5 axis can be an effective strategy for treating CRC liver metastasis.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50028 ◽  
Author(s):  
Jyotica Batra ◽  
Jessica Robinson ◽  
Christine Mehner ◽  
Alexandra Hockla ◽  
Erin Miller ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Duo Xu ◽  
Shun-Qing Liang ◽  
Zhang Yang ◽  
Haitang Yang ◽  
Rémy Bruggmann ◽  
...  

AbstractEscape from programmed cell death is a hallmark of cancer. In this study, we investigated the anti-apoptotic mechanisms and explored the therapeutic potential of BCL-2 homology domain-3 (BH3) mimetics in malignant pleural mesothelioma (MPM), a lethal thoracic malignancy with an extreme dearth of treatment options. By implementing integrated analysis of functional genomic data of MPM cells and quantitative proteomics of patients’ tumors, we identified BCL-XL as an anti-apoptotic driver that is overexpressed and confers an oncogenic dependency in MPM. MPM cells harboring genetic alterations that inactivate the NF2/LATS1/2 signaling are associated with increased sensitivity to A-1155463, a BCL-XL-selective BH3 mimetic. Importantly, BCL-XL inhibition elicits protective autophagy, and concomitant blockade of BCL-XL and autophagic machinery with A-1155463 and hydroxychloroquine (HCQ), the US Food and Drug Administration (FDA)-approved autophagy inhibitor, synergistically enhances anti-MPM effects in vitro and in vivo. Together, our work delineates the molecular basis underlying resistance to apoptosis and uncovers an evasive mechanism that limits response to BH3 mimetics in MPM, suggesting a novel strategy to target this aggressive disease.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document