scholarly journals The transcriptomic signature of physiological trade-offs caused by larval overcrowding in Drosophila melanogaster

2022 ◽  
Author(s):  
Juliano Morimoto ◽  
Davina Derous ◽  
Marius Wenzel ◽  
Youn Henry ◽  
Herve Colinet

Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways and physiological trade-offs underpinning these ecological processes are poorly characterised. We reared Drosophila melanogaster at three egg densities (5, 60 and 300 eggs/ml) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs) including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, Taurine, Toll/Imd signalling and P450 xenobiotics metabolism pathways. Overall, our findings show that larval overcrowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 815
Author(s):  
Sandra V. Rojas-Nossa ◽  
José María Sánchez ◽  
Luis Navarro

Floral development depends on multifactor processes related to genetic, physiological, and ecological pathways. Plants respond to herbivores by activating mechanisms aimed at tolerating, compensating, or avoiding loss of biomass and nutrients, and thereby survive in a complex landscape of interactions. Thus, plants need to overcome trade-offs between development, growth, and reproduction vs. the initiation of anti-herbivore defences. This study aims to assess the frequency of phloem-feeding herbivores in wild populations of the Etruscan honeysuckle (Lonicera etrusca Santi) and study their effects on floral development and reproduction. The incidence of herbivory by the honeysuckle aphid (Hyadaphis passerinii del Guercio) was assessed in three wild populations of the Iberian Peninsula. The effect of herbivory on floral morphology, micromorphology of stigmas and pollen, floral rewards, pollination, and fruit and seed set were studied. The herbivory by aphids reduces the size of flowers and pollen. Additionally, it stops nectar synthesis and causes malformation in pollen and microstructures of stigmas, affecting pollination. As a consequence, fruit set and seed weight are reduced. This work provides evidence of the changes induced by phloem-feeding herbivores in floral development and functioning that affect the ecological processes necessary to maintain the reproductive success of plants.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 129 ◽  
Author(s):  
Michael Prummer

Differential gene expression (DGE) studies often suffer from poor interpretability of their primary results, i.e., thousands of differentially expressed genes. This has led to the introduction of gene set analysis (GSA) methods that aim at identifying interpretable global effects by grouping genes into sets of common context, such as, molecular pathways, biological function or tissue localization. In practice, GSA often results in hundreds of differentially regulated gene sets. Similar to the genes they contain, gene sets are often regulated in a correlative fashion because they share many of their genes or they describe related processes. Using these kind of neighborhood information to construct networks of gene sets allows to identify highly connected sub-networks as well as poorly connected islands or singletons. We show here how topological information and other network features can be used to filter and prioritize gene sets in routine DGE studies. Community detection in combination with automatic labeling and the network representation of gene set clusters further constitute an appealing and intuitive visualization of GSA results. The RICHNET workflow described here does not require human intervention and can thus be conveniently incorporated in automated analysis pipelines.


Evolution ◽  
1996 ◽  
Vol 50 (2) ◽  
pp. 753 ◽  
Author(s):  
Adam K. Chippindale ◽  
Terence J. F. Chu ◽  
Michael R. Rose

2020 ◽  
Vol 29 (14) ◽  
pp. 2661-2675 ◽  
Author(s):  
Rafael A. Homem ◽  
Bliss Buttery ◽  
Ewan Richardson ◽  
Yao Tan ◽  
Linda M. Field ◽  
...  

Heredity ◽  
2003 ◽  
Vol 90 (2) ◽  
pp. 195-202 ◽  
Author(s):  
A R Anderson ◽  
J E Collinge ◽  
A A Hoffmann ◽  
M Kellett ◽  
S W McKechnie

2016 ◽  
Vol 3 (10) ◽  
pp. 160463 ◽  
Author(s):  
Wolfgang Goymann ◽  
Ignas Safari ◽  
Christina Muck ◽  
Ingrid Schwabl

The decision to provide parental care is often associated with trade-offs, because resources allocated to parental care typically cannot be invested in self-maintenance or mating. In most animals, females provide more parental care than males, but the reason for this pattern is still debated in evolutionary ecology. To better understand sex differences in parental care and its consequences, we need to study closely related species where the sexes differ in offspring care. We investigated parental care in relation to offspring growth in two closely related coucal species that fundamentally differ in sex roles and parental care, but live in the same food-rich habitat with a benign climate and have a similar breeding phenology. Incubation patterns differed and uniparental male black coucals fed their offspring two times more often than female and male white-browed coucals combined. Also, white-browed coucals had more ‘off-times’ than male black coucals, during which they perched and preened. However, these differences in parental care were not reflected in offspring growth, probably because white-browed coucals fed their nestlings a larger proportion of frogs than insects. A food-rich habitat with a benign climate may be a necessary, but—perhaps unsurprisingly—is not a sufficient factor for the evolution of uniparental care. In combination with previous results (Goymann et al . 2015 J. Evol. Biol . 28 , 1335–1353 ( doi:10.1111/jeb.12657 )), these data suggest that white-browed coucals may cooperate in parental care, because they lack opportunities to become polygamous rather than because both parents were needed to successfully raise all offspring. Our case study supports recent theory suggesting that permissive environmental conditions in combination with a particular life history may induce sexual selection in females. A positive feedback loop among sexual selection, body size and adult sex-ratio may then stabilize reversed sex roles in competition and parental care.


Aging Cell ◽  
2006 ◽  
Vol 5 (6) ◽  
pp. 533-543 ◽  
Author(s):  
Sergiy Libert ◽  
Yufang Chao ◽  
Xiaowen Chu ◽  
Scott D. Pletcher

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Cheng Shi ◽  
Alexi M Runnels ◽  
Coleen T Murphy

Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation.


Sign in / Sign up

Export Citation Format

Share Document