scholarly journals A giant virus genome is densely packaged by stable nucleosomes

2022 ◽  
Author(s):  
Terri D. Bryson ◽  
Pablo De Ioannes ◽  
Marco Igor Valencia-Sanchez ◽  
Jorja G Henikoff ◽  
Paul B. Talbert ◽  
...  

The doublet histones of Marseillevirus are distantly related to the four eukaryotic core histones and wrap DNA to form remarkably similar nucleosomes. By releasing Marseillevirus chromatin from virions into solution and performing genome-wide nuclease digestion and chemical cleavage assays, we find that the higher-order organization of Marseillevirus chromatin differs greatly from that of eukaryotes. Marseillevirus nucleosomes fully protect DNA within virions, without linker DNA or phasing along genes. Likewise, we observe that most nucleosomes reconstituted onto 3-copy tandem repeats of a nucleosome positioning sequence are tightly packed and fully wrapped. We also document repeat generation and instability during viral passage in amoeboid culture. Dense promiscuous packing of fully wrapped nucleosomes rather than 'beads-on-a-string' with genic punctuation suggests a viral genome protection function for doublet histones.

2019 ◽  
Vol 63 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Sandro Baldi

Abstract The positioning of nucleosomes relative to DNA and their neighboring nucleosomes represents a fundamental layer of chromatin organization. Changes in nucleosome positioning and spacing affect the accessibility of DNA to regulatory factors and the formation of higher order chromatin structures. Sequencing of mononucleosomal fragments allowed mapping nucleosome positions on a genome-wide level in many organisms. This revealed that successions of evenly spaced and well-positioned nucleosomes—so called phased nucleosome arrays—occur at the 5′ end of many active genes and in the vicinity of transcription factor and other protein binding sites. Phased arrays arise from the interplay of barrier elements on the DNA, which position adjacent nucleosomes, and the nucleosome spacing activity of ATP-dependent chromatin remodelers. A shortcoming of classic mononucleosomal mapping experiments is that they only reveal nucleosome spacing and array regularity at select sites in the genome with well-positioned nucleosomes. However, new technological approaches elucidate nucleosome array structure throughout the genome and with single-cell resolution. In the future, it will be interesting to see whether changes in nucleosome array regularity and spacing contribute to the formation of higher order chromatin structures and the spatial organization of the genome in vivo.


Author(s):  
Rami Obeid ◽  
Elias Wehbe ◽  
Mohamad Rima ◽  
Mohammad Kabara ◽  
Romeo Al Bersaoui ◽  
...  

Background: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particularly tobacco, causing a production loss. Objectives: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. Methods: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crops samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. Results and Discussion: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. Conclusion: Our study is the first in Lebanon revealing TMV infection in crop fields, and highlighting the danger that may affect the future of agriculture.


Chromosoma ◽  
2021 ◽  
Vol 130 (1) ◽  
pp. 27-40
Author(s):  
Guoqing Liu ◽  
Hongyu Zhao ◽  
Hu Meng ◽  
Yongqiang Xing ◽  
Lu Cai

AbstractWe present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


2021 ◽  
Author(s):  
Linda Zhou ◽  
Chunmin Ge ◽  
Thomas Malachowski ◽  
Ji Hun Kim ◽  
Keerthivasan Raanin Chandradoss ◽  
...  

AbstractShort tandem repeat (STR) instability is causally linked to pathologic transcriptional silencing in a subset of repeat expansion disorders. In fragile X syndrome (FXS), instability of a single CGG STR tract is thought to repress FMR1 via local DNA methylation. Here, we report the acquisition of more than ten Megabase-sized H3K9me3 domains in FXS, including a 5-8 Megabase block around FMR1. Distal H3K9me3 domains encompass synaptic genes with STR instability, and spatially co-localize in trans concurrently with FMR1 CGG expansion and the dissolution of TADs. CRISPR engineering of mutation-length FMR1 CGG to normal-length preserves heterochromatin, whereas cut-out to pre-mutation-length attenuates a subset of H3K9me3 domains. Overexpression of a pre-mutation-length CGG de-represses both FMR1 and distal heterochromatinized genes, indicating that long-range H3K9me3-mediated silencing is exquisitely sensitive to STR length. Together, our data uncover a genome-wide surveillance mechanism by which STR tracts spatially communicate over vast distances to heterochromatinize the pathologically unstable genome in FXS.One-Sentence SummaryHeterochromatinization of distal synaptic genes with repeat instability in fragile X is reversible by overexpression of a pre-mutation length CGG tract.


2009 ◽  
Vol 83 (10) ◽  
pp. 5137-5147 ◽  
Author(s):  
Hiromichi Hara ◽  
Hideki Aizaki ◽  
Mami Matsuda ◽  
Fumiko Shinkai-Ouchi ◽  
Yasushi Inoue ◽  
...  

ABSTRACT Persistent infection with hepatitis C virus (HCV) is a major cause of chronic liver diseases. The aim of this study was to identify host cell factor(s) participating in the HCV replication complex (RC) and to clarify the regulatory mechanisms of viral genome replication dependent on the host-derived factor(s) identified. By comparative proteome analysis of RC-rich membrane fractions and subsequent gene silencing mediated by RNA interference, we identified several candidates for RC components involved in HCV replication. We found that one of these candidates, creatine kinase B (CKB), a key ATP-generating enzyme that regulates ATP in subcellular compartments of nonmuscle cells, is important for efficient replication of the HCV genome and propagation of infectious virus. CKB interacts with HCV NS4A protein and forms a complex with NS3-4A, which possesses multiple enzyme activities. CKB upregulates both NS3-4A-mediated unwinding of RNA and DNA in vitro and replicase activity in permeabilized HCV replicating cells. Our results support a model in which recruitment of CKB to the HCV RC compartment, which has high and fluctuating energy demands, through its interaction with NS4A is important for efficient replication of the viral genome. The CKB-NS4A association is a potential target for the development of a new type of antiviral therapeutic strategy.


2017 ◽  
Vol 372 (1733) ◽  
pp. 20160360 ◽  
Author(s):  
K. M. Creamer ◽  
J. B. Lawrence

XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment factor A (SAF-A) is involved in anchoring XIST , but argues against the view that SAF-A provides a unimolecular bridge between RNA and the chromosome. Rather, we suggest that a complex meshwork of architectural proteins interact with XIST RNA. Parallel work studying the territory of actively transcribed chromosomes suggests that repeat-rich RNA ‘coats’ euchromatin and may impact chromosome architecture in a manner opposite of XIST . A model is discussed whereby RNA may not just recruit histone modifications, but more directly impact higher-order chromatin condensation via interaction with architectural proteins of the nucleus. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.


1982 ◽  
Vol 57 (1) ◽  
pp. 151-160
Author(s):  
K.L. Barnes ◽  
R.A. Craigie ◽  
P.A. Cattini ◽  
T. Cavalier-Smith

We have isolated a crude nuclear preparation from the unicellular red alga Porphyridium aerugineum and investigated the structure of Porphyridium chromatin. Electrophoresis of deproteinized DNA fragments produced by micrococcal nuclease digestion of Porphyridium nuclei gives a typical ladder pattern, indicative of a repeating structure. The DNA repeat-length, calculated from plots of multimer length against multimer number, varies somewhat between different digestions, ranging from 160 to 180 base-pairs (average 173). We interpret this as evidence of heterogeneity in repeat-length; the calculated repeat-length depends on the extent of digestion because chromatin sub-populations with longer repeat-lengths are on average digested earlier. Polyacrylamide/sodium dodecyl sulphate gel electrophoresis of basic proteins purified from Porphyridium nuclear preparations gives a pattern characteristic of core histones. Although our interpretation is complicated by some degradation, the result strongly suggests that Porphyridium chromatin contains each of the four core histones and that they are similar to those of higher eukaryotes. This, together with the micrococcal nuclease digestion results, demonstrates that Porphyridium chromatin is not fundamentally different from that of higher eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document